Skip to main content

Molecular Dynamics Applied in Drug Discovery: The Case of HIV-1 Protease

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Molecular dynamics (MD) is a way to computationally simulate the movement of particles and it is widely used to provide a dynamic perspective on biomolecules. Nowadays, the ever-growing computer power and the improvement in methodology further strengthen the role of MD in drug discovery. In this chapter, an overview of MD’s application in drug discovery will be given first, using HIV-1 protease as an example. Then, the underlying theories of MD will be briefly outlined. The second half of this chapter will provide a practical protocol on how to simulate a soluble protein in solvent. All-atom simulation with either implicit solvent or explicit solvent will be covered. The former samples global conformational change more efficiently, and post-processing including angle/distance measurement, structural deviation measurement, Ramachandran plot, and secondary structure analysis will be introduced. The latter is more realistic/expensive and is generally used to finely examine local conformational rearrangement and water-mediated interactions. Post-processing including water density analysis will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wlodawer, A., and Vondrasek, J. (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design, Annu Rev Biophys Biomol Struct 27, 249–284.

    Article  PubMed  CAS  Google Scholar 

  2. Volarath, P., Harrison, R. W., and Weber, I. T. (2007) Structure based drug design for HIV protease: from molecular modeling to cheminformatics, Curr Top Med Chem 7, 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  3. Miller, M. (2010) The early years of retroviral protease crystal structures, Biopolymers 94, 521–529.

    Article  PubMed  CAS  Google Scholar 

  4. Wensing, A. M., van Maarseveen, N. M., and Nijhuis, M. (2010) Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance, Antiviral Res 85, 59–74.

    Article  PubMed  CAS  Google Scholar 

  5. Hornak, V., Okur, A., Rizzo, R. C., and Simmerling, C. (2006) HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations, Proceedings of the National Academy of Sciences of the United States of America 103, 915–920.

    Article  PubMed  CAS  Google Scholar 

  6. Cai, Y., and Schiffer, C. A. (2010) Decomposing the Energetic Impact of Drug Resistant Mutations in HIV-1 Protease on Binding DRV, Journal of Chemical Theory and Computation 6, 1358–1368.

    Article  PubMed  CAS  Google Scholar 

  7. Heyda, J., Pokorna, J., Vrbka, L., Vacha, R., Jagoda-Cwiklik, B., Konvalinka, J., Jungwirth, P., and Vondrasek, J. (2009) Ion specific effects of sodium and potassium on the catalytic activity of HIV-1 protease, Phys Chem Chem Phys 11, 7599–7604.

    Article  PubMed  CAS  Google Scholar 

  8. Minh, D. D., Chang, C. E., Trylska, J., Tozzini, V., and McCammon, J. A. (2006) The influence of macromolecular crowding on HIV-1 protease internal dynamics, J Am Chem Soc 128, 6006–6007.

    Article  PubMed  CAS  Google Scholar 

  9. Amaro, R. E., Baron, R., and McCammon, J. A. (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design, J Comput Aided Mol Des 22, 693–705.

    Article  PubMed  CAS  Google Scholar 

  10. Durdagi, S., Mavromoustakos, T., Chronakis, N., and Papadopoulos, M. G. (2008) Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations, Bioorg Med Chem 16, 9957–9974.

    Article  PubMed  CAS  Google Scholar 

  11. Okimoto, N., Futatsugi, N., Fuji, H., Suenaga, A., Morimoto, G., Yanai, R., Ohno, Y., Narumi, T., and Taiji, M. (2009) High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations, PLoS Comput Biol 5, e1000528.

    Article  PubMed  Google Scholar 

  12. Chang, C. E. A., Trylska, J., Tozzini, V., and McCammon, J. A. (2007) Binding pathways of ligands to HIV-1 protease: Coarse-grained and atomistic simulations, Chemical Biology & Drug Design 69, 5–13.

    Article  CAS  Google Scholar 

  13. Pietrucci, F., Marinelli, F., Carloni, P., and Laio, A. (2009) Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations, J Am Chem Soc 131, 11811–11818.

    Article  PubMed  CAS  Google Scholar 

  14. Lei, H., and Duan, Y. (2007) Improved sampling methods for molecular simulation, Curr Opin Struct Biol 17, 187–191.

    Article  PubMed  CAS  Google Scholar 

  15. Scheraga, H. A., Khalili, M., and Liwo, A. (2007) Protein-folding dynamics: Overview of molecular simulation techniques, Annu. Rev. Phys. Chem. 58, 57–83.

    Article  PubMed  CAS  Google Scholar 

  16. Liwo, A., Czaplewski, C., Oldziej, S., and Scheraga, H. A. (2008) Computational techniques for efficient conformational sampling of proteins, Curr Opin Struct Biol 18, 134–139.

    Article  PubMed  CAS  Google Scholar 

  17. Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., and Shaw, D. E. (2009) Long-timescale molecular dynamics simulations of protein structure and function, Curr Opin Struc Biol 19, 120–127.

    Article  CAS  Google Scholar 

  18. MacKerell, A. D., Jr., Feig, M., and Brooks, C. L., 3rd. (2004) Improved treatment of the protein backbone in empirical force fields, J Am Chem Soc 126, 698–699.

    Article  PubMed  CAS  Google Scholar 

  19. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters, Proteins-Structure Function and Bioinformatics 65, 712–725.

    Article  CAS  Google Scholar 

  20. Ponder, J. W., and Case, D. A. (2003) Force fields for protein simulations, Protein Simulations 66, 27–85.

    Article  CAS  Google Scholar 

  21. Guvench, O., and MacKerell, A. D. (2008) Comparison of Protein Force Fields for Molecular Dynamics Simulations, in Methods in Molecular Biology, pp 63–88.

    Google Scholar 

  22. Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C. (1977) Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes, Journal of Computational Physics 23, 327–341.

    Article  CAS  Google Scholar 

  23. Darden, T., York, D., and Pedersen, L. (1993) Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems, Journal of Chemical Physics 98, 10089–10092.

    Article  CAS  Google Scholar 

  24. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G. (1995) A Smooth Particle Mesh Ewald Method, Journal of Chemical Physics 103, 8577–8593.

    Article  CAS  Google Scholar 

  25. Crowley, M. F., Darden, T. A., Cheatham, T. E., and Deerfield, D. W. (1997) Adventures in improving the scaling and accuracy of a parallel molecular dynamics program, Journal of Supercomputing 11, 255–278.

    Article  Google Scholar 

  26. Toukmaji, A., Sagui, C., Board, J., and Darden, T. (2000) Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions, Journal of Chemical Physics 113, 10913–10927.

    Article  CAS  Google Scholar 

  27. Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Crowley, M., Walker, R. C., Zhang, W., Merz, K. M., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossvary, I., Wong, K. F., Paesani, F., Vanicek, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Yang, L., Tan, C., Mongan, J., Hornak, V., Cui, G., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., and Kollman, P. A. (2008) AMBER 10.

    Google Scholar 

  28. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics, Journal of Molecular Graphics 14, 33–38.

    Article  PubMed  CAS  Google Scholar 

  29. Lindahl, E., Hess, B., and van der Spoel, D. (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis, Journal of Molecular Modeling 7, 306–317.

    CAS  Google Scholar 

  30. Lindahl, E. R. (2008) Molecular dynamics simulations, Methods Mol Biol 443, 3–23.

    Article  PubMed  CAS  Google Scholar 

  31. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank, Nucleic Acids Research 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  32. Eyal, E., Gerzon, S., Potapov, V., Edelman, M., and Sobolev, V. (2005) The limit of accuracy of protein modeling: Influence of crystal packing on protein structure, Journal of Molecular Biology 351, 431–442.

    Article  PubMed  CAS  Google Scholar 

  33. Kleywegt, G. J., Harris, M. R., Zou, J. Y., Taylor, T. C., Wahlby, A., and Jones, T. A. (2004) The Uppsala Electron-Density Server, Acta Crystallogr. Sect. D-Biol. Crystallogr. 60, 2240–2249.

    Article  Google Scholar 

  34. Davis, I. W., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2004) MolProbity: structure validation and all-atom contact analysis for nucleic acids and their complexes, Nucleic Acids Research 32, W615-W619.

    Article  PubMed  CAS  Google Scholar 

  35. Guex, N., and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling, Electrophoresis 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  36. Joung, I. S., and Cheatham, T. E., 3rd. (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations, J Phys Chem B 112, 9020–9041.

    Article  PubMed  CAS  Google Scholar 

  37. Joung, I. S., and Cheatham, T. E., 3rd. (2009) Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters, J Phys Chem B 113, 13279–13290.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and testing of a general amber force field, J Comput Chem 25, 1157–1174.

    Article  PubMed  CAS  Google Scholar 

  39. Dupradeau, F. Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., and Cieplak, P. (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building, Phys Chem Chem Phys 12, 7821–7839.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Simmerling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shang, Y., Simmerling, C. (2012). Molecular Dynamics Applied in Drug Discovery: The Case of HIV-1 Protease. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_31

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics