Skip to main content

Evolutionary Trace for Prediction and Redesign of Protein Functional Sites

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

The evolutionary trace (ET) is the single most validated approach to identify protein functional determinants and to target mutational analysis, protein engineering and drug design to the most relevant sites of a protein. It applies to the entire proteome; its predictions come with a reliability score; and its results typically reach significance in most protein families with 20 or more sequence homologs. In order to identify functional hot spots, ET scans a multiple sequence alignment for residue variations that correlate with major evolutionary divergences. In case studies this enables the selective separation, recoding, or mimicry of functional sites and, on a large scale, this enables specific function predictions based on motifs built from select ET-identified residues. ET is therefore an accurate, scalable and efficient method to identify the molecular determinants of protein function and to direct their rational perturbation for therapeutic purposes. Public ET servers are located at: http://mammoth.bcm.tmc.edu/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtarge, O., Bourne, H.R. & Cohen, F.E. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257, 342–358 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. Lichtarge, O., Yamamoto, K.R. & Cohen, F.E. Identification of functional surfaces of the zinc binding domains of intracellular receptors. J Mol Biol 274, 325–337 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. Madabushi, S. et al. Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J Mol Biol 316, 139–154 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. Yao, H. et al. A Sensitive, Accurate, and Scalable Method to Identify Functional Sites in Protein Structures. J. Mol. Biol 326, 255–261. (2003).

    Article  PubMed  CAS  Google Scholar 

  5. Rodriguez, G.J., Yao, R., Lichtarge, O. & Wensel, T.G. Evolution-guided discovery and recoding of allosteric pathway specificity determinants in psychoactive bioamine receptors. Proc Natl Acad Sci U S A 107, 7787–7792.

    Google Scholar 

  6. Ribes-Zamora, A., Mihalek, I., Lichtarge, O. & Bertuch, A.A. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat Struct Mol Biol 14, 301–307 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Rajagopalan, L., Pereira, F.A., Lichtarge, O. & Brownell, W.E. Identification of functionally important residues/domains in membrane proteins using an evolutionary approach coupled with systematic mutational analysis. Methods Mol Biol 493, 287–297 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Kobayashi, H., Ogawa, K., Yao, R., Lichtarge, O. & Bouvier, M. Functional rescue of beta-adrenoceptor dimerization and trafficking by pharmacological chaperones. Traffic 10, 1019–1033 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. Baameur, F. et al. Role for the regulator of G-protein signaling homology domain of G protein-coupled receptor kinases 5 and 6 in beta 2-adrenergic receptor and rhodopsin phosphorylation. Mol Pharmacol 77, 405–415.

    Google Scholar 

  10. Ward, R.M. et al. De-orphaning the structural proteome through reciprocal comparison of evolutionarily important structural features. PLoS ONE 3, e2136 (2008).

    Article  PubMed  Google Scholar 

  11. Erdin, S., Ward, R.M., Venner, E. & Lichtarge, O. Evolutionary trace annotation of protein function in the structural proteome. J Mol Biol 396, 1451–1473.

    Google Scholar 

  12. Onrust, R. et al. Receptor and betagamma binding sites in the alpha subunit of the retinal G protein transducin. Science 275, 381–384 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. Sowa, M.E., He, W., Wensel, T.G. & Lichtarge, O. A regulator of G protein signaling interaction surface linked to effector specificity. Proc Natl Acad Sci U S A 97, 1483–1488 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. Sowa, M.E. et al. Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat Struct Biol 8, 234–237 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. Lichtarge, O., Bourne, H.R. & Cohen, F.E. Evolutionarily conserved Galphabetagamma binding surfaces support a model of the G protein-receptor complex. Proc Natl Acad Sci U S A 93, 7507–7511 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. Shenkin, P.S., Erman, B. & Mastrandrea, L.D. Information-theoretical entropy as a measure of sequence variability. Proteins 11, 297–313 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. Mihalek, I., Res, I. & Lichtarge, O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J Mol Biol 336, 1265–1282 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. Mihalek, I., Res, I., Yao, H. & Lichtarge, O. Combining inference from evolution and geometric probability in protein structure evaluation. J Mol Biol 331, 263–279 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. Mihalek, I., Res, I. & Lichtarge, O. Evolutionary and structural feedback on selection of sequences for comparative analysis of proteins. Proteins 63, 87–99 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. Mihalek, I., Res, I. & Lichtarge, O. A structure and evolution-guided Monte Carlo sequence selection strategy for multiple alignment-based analysis of proteins. Bioinformatics 22, 149–156 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Wilkins, A.D., Lua, R., Erdin, S., Ward, R.M. & Lichtarge, O. Sequence and structure continuity of evolutionary importance improves protein functional site discovery and annotation. Protein Sci 19, 1296–1311.

    Google Scholar 

  22. Quan, X.J. et al. Evolution of neural precursor selection: functional divergence of proneural proteins. Development 131, 1679–1689 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. Yao, H., Mihalek, I. & Lichtarge, O. Rank information: a structure-independent measure of evolutionary trace quality that improves identification of protein functional sites. Proteins 65, 111–123 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235–242 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. Polacco, B.J. & Babbitt, P.C. Automated discovery of 3D motifs for protein function annotation. Bioinformatics 22, 723–730 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Porter, C.T., Bartlett, G.J. & Thornton, J.M. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32, D129–133 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. Kristensen, D.M. et al. Recurrent use of evolutionary importance for functional annotation of proteins based on local structural similarity. Protein Sci 15, 1530–1536 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. Kristensen, D.M. et al. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids. BMC Bioinformatics 9, 17 (2008).

    Article  PubMed  Google Scholar 

  29. Redfern, O.C., Dessailly, B.H., Dallman, T.J., Sillitoe, I. & Orengo, C.A. FLORA: a novel method to predict protein function from structure in diverse superfamilies. PLoS Comput Biol 5, e1000485 (2009).

    Article  PubMed  Google Scholar 

  30. Venner, E., Lisewski, A.M., Erdin, S., Ward, R.W., Amin, S. & Lichtarge, O. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities. PLoS One 12, e14286 (2010).

    Google Scholar 

  31. Gill, S.R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187, 2426–2438 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).

    PubMed  CAS  Google Scholar 

  33. Lua, R.C. & Lichtarge, O. PyETV: a PyMOL evolutionary trace viewer to analyze functional site predictions in protein complexes. Bioinformatics 26, 2981–2982.

    Google Scholar 

  34. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  PubMed  CAS  Google Scholar 

  35. International Union of Biochemistry and Molecular Biology. Nomenclature Committee. & Webb, E.C. Enzyme nomenclature 1992 : recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes. (Academic Press, San Diego; 1992).

    Google Scholar 

  36. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25–29 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. Mihalek, I., Res, I. & Lichtarge, O. Evolutionary trace report_maker: a new type of service for comparative analysis of proteins. Bioinformatics 22, 1656–1657 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. Morgan, D.H., Kristensen, D.M., Mittelman, D. & Lichtarge, O. ET viewer: an application for predicting and visualizing functional sites in protein structures. Bioinformatics 22, 2049–2050 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. DeLano, W.L. The PyMOL Molecular Graphics System, San Carlos, CA, DeLano Scientific. (2002).

    Google Scholar 

  40. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774–797 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Gu, P. et al. Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors. J Biol Chem 280, 31818–31829 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Madabushi, S. et al. Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J Biol Chem 279, 8126–8132 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. Shenoy, S.K. et al. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281, 1261–1273 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge grant support from the National Institute of Health through NIH-GM079656, NIH-GM066099, T90 DA022885, R90 DA023418, NLM 5T15LM07093, and of the National Science Foundation through NSF CCF-0905536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Lichtarge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wilkins, A., Erdin, S., Lua, R., Lichtarge, O. (2012). Evolutionary Trace for Prediction and Redesign of Protein Functional Sites. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics