Skip to main content

Free Energy Calculations from One-Step Perturbations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

The one-step perturbation approach offers an efficient means to estimate free energy differences. It may be applied to estimate solvation free energies, conformational preferences or relative free energies of binding of series of compounds to a common receptor. Applicability of the method depends on the possibility to define a proper reference state which may in itself be an unphysical molecule. Here, we describe practical considerations and explicit guidelines to define a proper reference state, and to efficiently calculate relative free energies. The strengths and limitations of the method are highlighted and special considerations are noted. The method may be applied using many different simulation programs. Here, analyses are exemplified at the hand of the GROMOS simulation package.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beveridge, D. L., DiCapua, F. M. (1989) Free energy via molecular simulation: Applications to chemical and biomolecular systems. Ann Rev Biophys Biophys Chem 18, 431–492.

    Article  CAS  Google Scholar 

  2. Brandsdal, B. O., Österberg, F., Almlöf, M., Feierberg, I., Luzhkov, V. B., Åqvist, J. (2003) Free energy calculations and ligand binding. Adv Prot Chem 66, 123–158.

    Article  CAS  Google Scholar 

  3. Kollman, P. (1993) Free energy calculations: Applications to chemical and biochemical phenomena. Chem Rev 93, 2395–2417.

    Article  CAS  Google Scholar 

  4. Zwanzig, R. W. (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22, 1420–1426.

    Article  CAS  Google Scholar 

  5. Liu, H. Y., Mark, A. E., van Gunsteren, W. F. (1996) Estimating the relative free energy of different molecular states with respect to a single reference state. J Phys Chem 100, 9485–9494.

    Article  CAS  Google Scholar 

  6. Oostenbrink, C., van Gunsteren, W. F. (2004) Free energies of binding of polychlorinated biphenyls to the estrogen receptor from a single simulation. Proteins 54, 237–246.

    Article  PubMed  CAS  Google Scholar 

  7. Beutler, T. C., Mark, A. E., van Schaik, R. C., Gerber, P. R., van Gunsteren, W. F. (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222, 529–539.

    Article  CAS  Google Scholar 

  8. Schäfer, H., van Gunsteren, W. F., Mark, A. E. (1999) Estimating relative free energies from a single ensemble: Hydration free energies. J Comput Chem 20, 1604–1617.

    Article  Google Scholar 

  9. Pitera, J. W., van Gunsteren, W. F. (2001) One-step perturbation methods for solvation free energies of polar solutes. J Phys Chem B 105, 11264–11274.

    Article  CAS  Google Scholar 

  10. Oostenbrink, C., van Gunsteren, W. F. (2005) Efficient calculation of many stacking and pairing free energies in DNA from a few molecular dynamics simulations. Chem Eur J 11, 4340–4348.

    Article  PubMed  CAS  Google Scholar 

  11. Hritz, J., Oostenbrink, C. (2009) Efficient free energy calculations for compounds with multiple stable conformations separated by high energy barriers. J Phys Chem B 113, 12711–12720.

    Article  PubMed  CAS  Google Scholar 

  12. Lin, Z., Kornfeld, J., Mächler, M., van Gunsteren, W. F. (2010) Prediction of folding equilibria of differently substituted peptides using one-step perturbation. J Am Chem Soc 132, 7226–7278.

    Google Scholar 

  13. Lin, Z., Liu, H. Y., van Gunsteren, W. F. (2010) Using one-step perturbation to predict the effect of changing force-field parameters on the simulated folding equilibrium of a beta-peptide in solution. J Comput Chem 31, 2419–2427.

    PubMed  CAS  Google Scholar 

  14. Oostenbrink, B. C., Pitera, J. W., Van Lipzig, M. M. H., Meerman, J. H. N., van Gunsteren, W. F. (2000) Simulations of the estrogen receptor ligand-binding domain: Affinity of natural ligands and xenoestrogens. J Med Chem 43, 4594–4605.

    Article  PubMed  CAS  Google Scholar 

  15. Oostenbrink, C., van Gunsteren, W. F. (2003) Single-step perturbations to calculate free energy differences from unphysical reference states: Limits on size, flexibility, and character. J Comput Chem 24, 1730–1739.

    Article  PubMed  CAS  Google Scholar 

  16. Oostenbrink, C., van Gunsteren, W. F. (2005) Free energies of ligand binding for structurally diverse compounds. Proc Nat Acad Sci USA 102, 6750–6754.

    Article  PubMed  CAS  Google Scholar 

  17. Oostenbrink, C. (2009) Efficient free energy calculations on small molecule host-guest systems - a combined linear interaction energy/one-step perturbation approach. J Comput Chem 30, 212–221.

    Article  PubMed  CAS  Google Scholar 

  18. Hritz, J., Läppchen, T., Oostenbrink, C. (2010) Binding affinity calculations for 8-substituted GTP analogs to the bacterial cell-division protein FtsZ. Eur Biophys J 29, 1573–1580.

    Google Scholar 

  19. van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark, A. E., Scott, W. R. P., Tironi, I. G. (1996) Biomolecular simulation: The GROMOS96 manual and user guide, Vdf Hochschulverlag AG an der ETH Zürich, Zürich.

    Google Scholar 

  20. Christen, M., Hünenberger, P. H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D., Heinz, T. N., Kastenholz, M. A., Kräutler, V., Oostenbrink, C., Peter, C., Trzesniak, D., van Gunsteren, W. F. (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26, 1719–1751.

    Article  PubMed  CAS  Google Scholar 

  21. Hritz, J., Oostenbrink, C. (2008) Hamiltonian replica exchange molecular dynamics using soft-core interactions. J Chem Phys 128, 144121.

    Article  PubMed  Google Scholar 

  22. Torrie, G. M., Valleau, J. P. (1977) Nonphysical sampling distibutions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23, 187–199.

    Article  Google Scholar 

  23. Severance, D. L., Essex, J. W., Jorgensen, W. L. (1995) Generalized alteration of structure and parameters: A new method for free-energy perturbations in systems containing flexible degrees of freedom. J Comput Chem 16, 311–327.

    Article  CAS  Google Scholar 

  24. Ryckaert, J.-P., Ciccotti, G., Berendsen, H. J. C. (1977) Numerical integration of cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J Comput Phys 23, 327–341.

    Article  CAS  Google Scholar 

  25. Oostenbrink, C., van Lipzig, M. M. H., van Gunsteren, W. F. (2007) Applications of molecular dynamics simulations in drug design, in Comprehensive Medicinal Chemistry II - Vol 4: Computer-Assisted Drug Design (Taylor, J. B., and Triggle, D. J., Eds.) pp 651–668, Elsevier, Amsterdam.

    Google Scholar 

  26. Allen, M. P., Tildesley, D. J. (1987) Computer simulation of liquids, Clarendon press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Oostenbrink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oostenbrink, C. (2012). Free Energy Calculations from One-Step Perturbations. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics