Skip to main content

Assignment of Protonation States in Proteins and Ligands: Combining pKa Prediction with Hydrogen Bonding Network Optimization

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Among the many applications of molecular modeling, drug design is probably the one with the highest demands on the accuracy of the underlying structures. During lead optimization, the position of every atom in the binding site should ideally be known with high precision to identify those chemical modifications that are most likely to increase drug affinity. Unfortunately, X-ray crystallography at common resolution yields an electron density map that is too coarse, since the chemical elements and their protonation states cannot be fully resolved.

This chapter describes the steps required to fill in the missing knowledge, by devising an algorithm that can detect and resolve the ambiguities. First, the pK a values of acidic and basic groups are predicted. Second, their potential protonation states are determined, including all permutations (considering for example protons that can jump between the oxygens of a phosphate group). Third, those groups of atoms are identified that can adopt alternative but indistinguishable conformations with essentially the same electron density. Fourth, potential hydrogen bond donors and acceptors are located. Finally, all these data are combined in a single “configuration energy function,” whose global minimum is found with the SCWRL algorithm, which employs dead-end elimination and graph theory. As a result, one obtains a complete model of the protein and its bound ligand, with ambiguous groups rotated to the best orientation and with protonation states assigned considering the current pH and the H-bonding network. An implementation of the algorithm has been available since 2008 as part of the YASARA modeling & simulation program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nabuurs SB, Wagener M, de Vlieg J (2007) A flexible approach to induced fit docking. J.Med.Chem. 50: 6507–6518

    Article  PubMed  CAS  Google Scholar 

  2. Ishikita H, Stehlik D, Golbeck JH, Knapp EW (2006) Electrostatic influence of PsaC protein binding to the PsaA/PsaB heterodimer in photosystem I. Biophys. J. 90: 1081–1089

    Article  PubMed  CAS  Google Scholar 

  3. Hooft RWW, Sander C, Vriend G (1996) Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 26: 363–376

    Article  PubMed  CAS  Google Scholar 

  4. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J.Mol.Biol. 285: 1735–1747

    Article  PubMed  CAS  Google Scholar 

  5. Grimsley GR, Scholtz JM, Pace CN A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci. 18: 247–251

    Google Scholar 

  6. Warwicker J (1999) Simplified methods for pKa and acid pH-dependent stability estimation in proteins: removing dielectric and counterion boundaries. Protein Sci. 8: 418–425

    Article  PubMed  CAS  Google Scholar 

  7. Sandberg L, Edholm O (1999) A fast and simple method to calculate protonation states in proteins. Proteins 36: 474–483

    Article  PubMed  CAS  Google Scholar 

  8. Warwicker J, Watson HC (1982) Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J.Mol.Biol. 157: 671–679

    Article  PubMed  CAS  Google Scholar 

  9. Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B (1993) On the calculation of pKas in proteins. 15: 252–265

    CAS  Google Scholar 

  10. Antosiewicz J, McCammon JA, Gilson MK (1994) Prediction of pH-dependent properties of proteins. J.Mol.Biol. 238: 415–436

    Article  PubMed  CAS  Google Scholar 

  11. Czodrowski P, Dramburg I, Sotriffer CA, Klebe G (2006) Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein-ligand complexes. Proteins 65: 424–437

    Article  PubMed  CAS  Google Scholar 

  12. Krieger E, Nielsen JE, Spronk CAEM, Vriend G (2006) Fast empirical pKa prediction by Ewald summation. J Mol Graph Model 25: 481–486

    Article  PubMed  CAS  Google Scholar 

  13. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73: 765–783

    Article  PubMed  CAS  Google Scholar 

  14. Lee AC, Yu JY, Crippen GM (2008) pKa prediction of monoprotic small molecules the SMARTS way. J.Chem.Inf.Model. 48: 2043–2053

    Google Scholar 

  15. Cruciani G, Milletti F, Storchi L, Sforna G, Goracci L (2009) In silico pKa prediction and ADME profiling. Chem.Biodivers. 6: 1812–1821

    Article  PubMed  CAS  Google Scholar 

  16. Weichenberger CX, Sippl MJ (2006) NQ-Flipper: validation and correction of asparagine/glutamine amide rotamers in protein crystal structures. Bioinformatics 22: 1397–1398

    Article  PubMed  CAS  Google Scholar 

  17. Lippert T, Rarey M (2009) Fast automated placement of polar hydrogen atoms in protein-ligand complexes. J.Cheminform. 1: 13

    Article  PubMed  Google Scholar 

  18. Weininger D (1993) SMILES, a chemical language and information system. J.Chem.Inf.Comput.Sci 28: 31–36

    Google Scholar 

  19. Canutescu AA, Shelenkov AA, Dunbrack RLJ (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12: 2001–2014

    Article  PubMed  CAS  Google Scholar 

  20. Forrest LR, Honig B (2005) An assessment of the accuracy of methods for predicting hydrogen positions in protein structures. Proteins: 296–309

    Google Scholar 

  21. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins. J.Comp.Chem. 24: 1999–2012

    Article  CAS  Google Scholar 

  22. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general AMBER force field. J.Comp.Chem. 25: 1157–1174

    Article  CAS  Google Scholar 

  23. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J.Comput.Chem. 23: 1623–1641

    Article  PubMed  CAS  Google Scholar 

  24. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J.Mol.Graph.Model. 25: 247–260

    Article  PubMed  Google Scholar 

  25. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35: W522-W525

    Article  PubMed  Google Scholar 

  26. Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J.Chem.Phys. 103: 8577–8593

    Article  Google Scholar 

  27. Edgcomb SP, Murphy PM (2002) Variability in the pKa of histidine side-chains correlates with burial within proteins. Proteins 49: 1–6

    Article  PubMed  CAS  Google Scholar 

  28. Milletti F, Storchi L, Goracci L, Bendels S, Wagner B, Kansy M, Cruciani G (2010) Extending pKa prediction accuracy: high-throughput pKa measurements to understand pKa modulation of new chemical series. Eur.J.Med.Chem. 45: 4270–4279

    Article  PubMed  CAS  Google Scholar 

  29. Sippl MJ (1996) Helmholtz free energy of peptide hydrogen bonds in proteins. J.Mol.Biol. 260: 644–648

    Article  PubMed  CAS  Google Scholar 

  30. Connolly ML (1983) Analytical molecular surface calculation. J.Appl.Cryst. 16: 548–558

    Article  CAS  Google Scholar 

  31. Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381: 272–272

    Article  PubMed  CAS  Google Scholar 

  32. Nielsen JE, McCammon JA (2003) On the evaluation and optimization of protein X-ray structures for pKa calculations. Protein Sci. 12: 313–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the users of the molecular modeling and simulation program YASARA for financing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Krieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krieger, E., Dunbrack, R.L., Hooft, R.W.W., Krieger, B. (2012). Assignment of Protonation States in Proteins and Ligands: Combining pKa Prediction with Hydrogen Bonding Network Optimization. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics