Skip to main content

A Case Study of Scoring and Rescoring in Peptide Docking

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Previously, we examined the application of a molecular dynamics-based simulated annealing cycling protocol to docking peptides to proteins using two implicit-solvent models: a distance-dependent dielectric model (ε(r) = 4r) and a version of the Generalized Born model termed GBMV. We found that rescoring structures obtained from one implicit-solvent model with the other could improve the identification of the correct docking pose. Here, we guide interested readers on how to perform a similar study, using the docking between a hexapeptide and the protein phosphatase YopH inYersinia pestis as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P. (1983) Optimization by Simulated Annealing,Science 220, 671–680.

    Article  PubMed  CAS  Google Scholar 

  2. Huang, Z., Wong, C. F., and Wheeler, R. A. (2008) Flexible Protein-Flexible Ligand Docking with Disrupted Velocity Simulated Annealing,Proteins: Struct. Funct. Bioinform. 71, 440–454.

    Article  CAS  Google Scholar 

  3. Huang, Z., and Wong, C. F. (2010) Incorporating Protein Flexibility in Molecular Docking by Molecular Dynamics: Applications to Protein Kinase and Phosphatase Systems InComputational Studeis of New Materials II (George, T. F., Jelski, D., Letfullin, R. R., and Zhang, G., Eds.), pp 219-249, World Scientific, Singapore.

    Google Scholar 

  4. Mitsutake, A., Sugita, Y., and Okamoto, Y. (2001) Generalized-Ensemble Algorithms for Molecular Simulations of Biopolymers,Biopolymers 60, 96–123.

    Article  PubMed  CAS  Google Scholar 

  5. Sugita, Y., and Okamoto, Y. (2002) Replica-Exchange Multicanonical Algorithm and Multicanonical Replica-exchange Method for Simulating Systems with Rough Energy Landscape,Chem. Phys. Lett. 329, 261–270.

    Article  Google Scholar 

  6. Lee, M. S., et al. (2003) New Analytic Approximation to the Standard Molecular Volume Definition and Its Application to Generalized Born Calculations,J. Comput. Chem. 24, 1348–1356.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, M. S., Salsbury Jr., F. R., and Brooks III, C. L. (2002) Novel Generalized Born Methods,J. Chem. Phys. 116, 10606–10614.

    Article  CAS  Google Scholar 

  8. MacKerell Jr., A. D., et al. (1998) All-atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins,J. Phys. Chem. B 102, 3586–3616.

    Article  CAS  Google Scholar 

  9. MacKerell Jr., A. D., Feig, M., and Brooks III, C. L. (2004) Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations,J. Comput. Chem. 25, 1400–1415.

    Article  PubMed  CAS  Google Scholar 

  10. Huang, Z., and Wong, C. F. (2009) Docking Flexible Peptide to Flexible Protein by Molecular Dynamics Using Two Implicit-Solvent Models: An Evaluation in Protein Kinase and Phosphatase Systems,J. Phys. Chem. B. 113, 14343–14354.

    Article  PubMed  CAS  Google Scholar 

  11. Phan, J., et al. (2003) High-resolution structure of theYersinia pestis protein tyrosine phosphatase YopH in complex with a phosphotyrosyl mimetic-containing hexapeptide,Biochemistry 42, 13113–13121.

    Article  PubMed  CAS  Google Scholar 

  12. Brooks, B. R., et al. (1983) CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations,J. Comput. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  13. Brooks, B. R., et al. (2009) CHARMM: The biomolecular simulation program,J. Comput. Chem. 30, 1545–1614.

    Article  PubMed  CAS  Google Scholar 

  14. Feig, M., Karanicolas, J., and Brooks III, C. L. (2004) MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology,J. Mol. Graph. Model. 22, 377–395.

    Article  PubMed  CAS  Google Scholar 

  15. Case, D. A., et al. (2005) The Amber biomolecular simulation programs,J. Comput. Chem. 26, 1668–1688.

    Article  PubMed  CAS  Google Scholar 

  16. Huang, Z., and Wong, C. F. (2007) A Mining-minima Approach to Exploring the Docking Pathways of p-Nitrocatechol Sulfate to YopH,Biophys. J. 93, 4141–4150.

    Article  PubMed  CAS  Google Scholar 

  17. Chocholoušová, J., and Feig, M. (2006) Balancing an Accurate Representation of the Molecular Surface in Genelized Born Formalisms with Integrator Stability in Molecular Dynamics Simulations,J. Comput. Chem. 27, 719–729.

    Article  PubMed  Google Scholar 

  18. Li, H., Robertson, A. D., and Jensen, J. H. (2005) Very Fast Empirical Prediction and Rationalization of Protein pKa Values,Proteins Struct. Funct. Bioinform. 61, 704–721.

    Google Scholar 

  19. Dillet, V., Etten, R. L. V., and Bashford, D. (2000) Stabilization of charges and protonation states in the active site of the protein tyrosine phosphatases: A Computational study,J. Phys. Chem. B 104, 11321–11333.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Research Award from the University of Missouri-Saint Louis, a Research Board Award from the University of Missouri System, the National Cancer Institute, and the National Institute of Allergy and Infectious Diseases. We also thank the University of Missouri Bioinformatics Consortium and the University of Missouri-Saint Louis Information Technology Services for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung F. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huang, Z., Wong, C.F. (2012). A Case Study of Scoring and Rescoring in Peptide Docking. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics