Skip to main content

MM-GB/SA Rescoring of Docking Poses

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

The critical issues in docking include the prediction of the correct binding pose and the accurate estimation of the corresponding binding affinity. Different docking methodologies have all been successful in reproducing the crystallographic binding modes, but struggle when predicting the corresponding binding affinities. The rescoring of docking poses using the MM-GB/SA technique has emerged as an important computational approach in structure-based lead optimization as it provides for congeneric molecules, clearly superior correlations with experimental data to those obtained with typical docking scoring functions. Although the technique has been collectively referred as MM-GB/SA, there are in fact many flavors in the literature. Here we describe the details of our MM-GB/SA scoring protocol, highlighting not only its strengths but also the limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Taylor RD; Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput-Aided Mol Des 16:151–16.

    Article  PubMed  CAS  Google Scholar 

  2. Shoichet BK, McGovern SL, Wei B et al (2002) Lead discovery using molecular docking. Curr Opin Chem Biol 6:439–44.

    Article  PubMed  CAS  Google Scholar 

  3. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening – an overview. Drug Discovery Today 3:160–17.

    Article  CAS  Google Scholar 

  4. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865.

    Article  PubMed  CAS  Google Scholar 

  5. Powers RA, Morandi F, Shoichet BK (2002) Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure 10:1013–1023.

    Article  PubMed  CAS  Google Scholar 

  6. Schapira M, Abagyan R, Totrov M (2003) Nuclear hormone receptor targeted virtual screening. J Med Chem 46:3045–3059.

    Article  PubMed  CAS  Google Scholar 

  7. Alvarez JC (2004) High-throughput docking as a source of novel drug leads. Curr Opin Chem Biol 8:1–6.

    Article  Google Scholar 

  8. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288.

    Article  PubMed  CAS  Google Scholar 

  9. Jones G, Willet P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748.

    Article  PubMed  CAS  Google Scholar 

  10. Rarey M, Kramer B, Lengauer T et al (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489.

    Article  PubMed  CAS  Google Scholar 

  11. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749.

    Article  PubMed  CAS  Google Scholar 

  12. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42:791–804.

    Article  PubMed  CAS  Google Scholar 

  13. Charifson PS, Corkey JJ, Murcko MA et al (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42:5100–5109.

    Article  PubMed  CAS  Google Scholar 

  14. Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56:235–249.

    Article  PubMed  CAS  Google Scholar 

  15. Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44:1035–1042.

    Article  PubMed  CAS  Google Scholar 

  16. Warren GL, Andrews CW, Capelli A-M et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931.

    Article  PubMed  CAS  Google Scholar 

  17. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791.

    Article  PubMed  CAS  Google Scholar 

  18. Still WC, Tempczyk A, Hawley RC et al (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129.

    Article  CAS  Google Scholar 

  19. (a) Bernacki K, Kalyanaraman C, Jacobson MP (2005) Virtual Ligand Screening against Escherichia coli dihydrofolate reductase: Improving docking enrichment physics-based methods. J Biomol Screening 10:675–681. (b) Huang N, Kalyanaraman C, Irwin JJ et al (2006) Physics-based scoring of protein-ligand complexes: Enrichment of known inhibitors in large-scale virtual screening. J Chem Inf Model 46:243–253. (c) Huang N, Kalyanaraman C, Bernacki K et al (2006) Molecular mechanics methods for predicting protein–ligand binding. Phys Chem Chem Phys 8:5166–5177. (d) Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49:4805–4808. (e) Lee MR, Sun Y (2007) Improving docking accuracy through molecular mechanics generalized Born optimization and scoring. J Chem Theory Comput 3:1106–1119. (f) Huang N, Jacobson MP (2007) Physics-based methods for studying protein-ligand interactions. Curr Opin Drug Discov Devel 10:325–331. (g) Foloppe N, Hubbard R (2006) Towards predictive ligand design with free-energy based computational methods? Curr Med Chem 13:3583–3608. (h) Pearlman DA (2005) Evaluating the molecular mechanics Poisson-Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J Med Chem 48:7796–807. (i) Kawatkar S, Wang H, Czerminski R et al (2009) Virtual fragment screening: An exploration of various docking and scoring protocols for fragments using Glide. J Comput-Aided Mol Des 23:527–539.

    Google Scholar 

  20. Guimarães CRW, Cardozo M (2008) MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model 48:958–970.

    Article  PubMed  Google Scholar 

  21. Abel R, Young T, Farid R et al (2008) Role of the active-site solvent in the thermodynamics of Factor Xa ligand binding. J Am Chem Soc 130:2817–2831.

    Article  PubMed  CAS  Google Scholar 

  22. Guimarães CRW, Mathiowetz AM (2010) Addressing limitations with the MM-GB/SA scoring procedure using the WaterMap method and free-energy perturbation calculations. J Chem Inf Model 50:547–559.

    Article  PubMed  Google Scholar 

  23. (a) Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11235. (b) Kaminski GA, Friesner RA, Tirado-Rives J et al (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487.

    Google Scholar 

  24. MacroModel, version 9.8, Schrödinger, LLC, New York, NY, 2010.

    Google Scholar 

  25. Maestro, version 9.1, Schrödinger, LLC, New York, NY, 2010.

    Google Scholar 

  26. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision Glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196.

    Article  PubMed  CAS  Google Scholar 

  27. Glide, version 5.6, Schrödinger, LLC, New York, NY, 2010.

    Google Scholar 

  28. Polak E, Ribiere G (1969) Note sur la convergence de méthodes de directions conjuguées. Revenue Francaise Informat. Recherche Operationelle, Serie Rouge.

    Google Scholar 

  29. Chang G, Guida W, Still WC (1989) An internal coordinate Monte-Carlo method for searching conformational space. J Am Chem Soc 111:4379–4384.

    Article  CAS  Google Scholar 

  30. Kuhn B, Gerber P, Schulz-Gasch, T et al (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48:4040–4048.

    Article  PubMed  CAS  Google Scholar 

  31. Chang CA, Chen W, Gilson MK (2007) Ligand configurational entropy and protein binding. Proc Natl Acad Sci USA 104:1534–1539.

    Article  PubMed  CAS  Google Scholar 

  32. Jorgensen WL, Ulmschneider JP, Tirado-Rives J (2004) Free energies of hydration from a generalized Born model and an all-atom force Field. J Phys Chem B 108:16264–16270.

    Article  CAS  Google Scholar 

  33. Roe DR, Okur A, Wickstrom L et al (2007) Secondary structure bias in generalized Born solvent models: Comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation. J Phys Chem B 111:1846–1857.

    Article  PubMed  CAS  Google Scholar 

  34. Gallicchio E, Kubo MM, Levy RM (2000) Enthalpy-entropy and cavity decomposition of alkane hydration free energies: Numerical results and implications for theories of hydrophobic solvation. J Phys Chem B 104:6271–628.

    Article  CAS  Google Scholar 

  35. Pitera JW, van Gunsteren WF (2001) The importance of solute-solvent van der Waals interactions with interior atoms of biopolymers. J Am Chem Soc 123:3163–3164.

    Article  PubMed  CAS  Google Scholar 

  36. Brown SP, Muchmore SW, Hajduk PJ (2009) Healthy skepticism: Assessing realistic model performance. Drug Discovery Today 14:420–427.

    Article  PubMed  Google Scholar 

  37. KNIME, version 1.2, Schrödinger, LLC, New York, NY, 2008.

    Google Scholar 

Download references

Acknowledgment

The author would like to thank Alan Mathiowetz from Pfizer and Mario Cardozo from Amgen who greatly contributed to the development of the MM-GB/SA protocol described in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano R. W. Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Guimarães, C.R.W. (2012). MM-GB/SA Rescoring of Docking Poses. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics