Skip to main content

Rodent Models of Adaptive Decision Making

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 829))

Abstract

Adaptive decision making affords the animal the ability to respond quickly to changes in a dynamic environment: one in which attentional demands, cost or effort to procure the reward, and reward contingencies change frequently. The more flexible the organism is in adapting choice behavior, the more command and success the organism has in navigating its environment. Maladaptive decision making is at the heart of much neuropsychiatric disease, including addiction. Thus, a better understanding of the mechanisms that underlie normal, adaptive decision making helps achieve a better understanding of certain diseases that incorporate maladaptive decision making as a core feature. This chapter presents three general domains of methods that the experimenter can manipulate in animal decision-making tasks: attention, effort, and reward contingency. Here, we present detailed methods of rodent tasks frequently employed within these domains: the Attentional Set-Shift Task, Effortful T-maze Task, and Visual Discrimination Reversal Learning. These tasks all recruit regions within the frontal cortex and the striatum, and performance is heavily modulated by the neurotransmitter dopamine, making these assays highly valid measures in the study of psychostimulant addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Izquierdo, A., Newman, T.K., Higley, J.D. and Murray, E.A. (2007) Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America. 104, 14128–14133.

    Article  PubMed  CAS  Google Scholar 

  2. Brigman, J.L., Mathur, P., Harvey-White, J., Izquierdo, A., Saksida, L.M., Bussey, T.J., Fox, S., Deneris, E., Murphy, D.L. and Holmes, A. (2010) Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cerebral Cortex doi:10.1093/cercor/bhp266.

  3. Dayan, P. and Daw, N.D. (2008) Decision theory, reinforcement learning, and the brain. Cogn Affect Behav Neurosci. 8, 429–453.

    Article  PubMed  Google Scholar 

  4. American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders, 4th edn. APA, Washington DC. (DSM/IV).

    Google Scholar 

  5. Ornstein, T.J., Iddon, J.L., Baldacchino, A.M., Sahakian, B.J., London, M., Everitt, B.J. and Robbins, T.W. (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology. 23, 113–126.

    Article  PubMed  CAS  Google Scholar 

  6. Hester, R. and Garavan, H. (2004) Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci. 24, 11017–11022.

    Article  PubMed  CAS  Google Scholar 

  7. Verdejo-Garcia, A. and Perez-Garcia, M. (2007) Profile of executive deficits in cocaine and heroin polysubstance users: common and differential effects on separate executive components. Psychopharmacology (Berl.). 190, 517–530.

    Google Scholar 

  8. Birrell, J.M. and Brown, V.J. (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci. 20, 4320–4.

    PubMed  CAS  Google Scholar 

  9. Tait, D.S., Brown, V.J., Farovik, A., Theobald, D.E., Dalley, J.W. and Robbins, T.W. (2007) Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci. 25, 3719–24.

    Article  PubMed  Google Scholar 

  10. McGaughy, J., Ross, R.S. and Eichenbaum, H. (2008) Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience. 153, 63–71.

    Article  PubMed  CAS  Google Scholar 

  11. Fletcher, P.J., Tenn, C.C., Rizos, Z., Lovic, V. and Kapur, S. (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology (Berl). 183, 190–200.

    Article  CAS  Google Scholar 

  12. Featherstone, R.E., Rizos, Z., Kapur, S. and Fletcher, P.J. (2008) A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res. 189, 170–9.

    Article  PubMed  CAS  Google Scholar 

  13. Izquierdo, A., Belcher, A.M., Scott, L., Cazares, V.A., Chen, J., O’Dell, S.J., Malvaez, M., Wu, T. and Marshall, J.F. (2010) Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology. 35, 505–514.

    Article  PubMed  CAS  Google Scholar 

  14. Walton, M.E., Bannerman, D.M. and Rushworth, M.F. (2002) The role of rat medial frontal cortex in effort-based decision making. J Neurosci. 22, 10996–11003.

    PubMed  CAS  Google Scholar 

  15. Floresco, S.B. and Ghods-Sharifi, S. (2007) Amygdala-prefrontal cortical circuitry regulates effort-based decision making. Cereb Cortex. 17, 251–260.

    Article  PubMed  Google Scholar 

  16. Hauber, W. and Sommer, S. (2009) Prefrontostriatal circuitry regulates effort-related decision making. Cereb Cortex. 19, 2240–2247.

    Article  PubMed  Google Scholar 

  17. Salamone, J.D., Cousins, M.S. and Bucher, S. (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res. 15, 221–229.

    Google Scholar 

  18. Denk, F., Walton, M.E., Jennings, K.A., Sharp, T., Rushworth, M.F. and Bannerman, D.M. (2005) Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology (Berl). 179, 587–596.

    Article  CAS  Google Scholar 

  19. Chudasama, Y. and Robbins, T.W. (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci. 23, 8771–8780.

    PubMed  CAS  Google Scholar 

  20. Chudasama, Y., Bussey, T.J. and Muir, J.L. (2001) Effects of selective thalamic and prelimbic cortex lesions on two types of visual discrimination and reversal learning. Eur J Neurosci. 14, 1009–1020.

    Article  PubMed  CAS  Google Scholar 

  21. Izquierdo, A., Wiedholz, L.M., Millstein, R.A., Yang, R.J., Bussey, T.J., Saksida, L.M. and Holmes, A. (2006) Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behavioural Brain Research. 171, 181–188.

    Article  PubMed  CAS  Google Scholar 

  22. Bussey, T.J., Saksida, L.M. and Rothblat, L.A. (2001) Discrimination of computer-graphic stimuli by mice: a method for the behavioral characterization of transgenic and gene-knockout models. Behav Neurosci. 115, 957–960.

    Article  PubMed  CAS  Google Scholar 

  23. Morton, A.J., Skillings, E., Bussey, T.J. and Saksida, L.M. (2006) Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system. Nat Methods. 3, 767.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Melissa Malvaez, Serena Ostrander, and Alisa Kosheleff for help with preparation of figures and Dr. Andrew Holmes for review of the final version of this manuscript. This work was supported by 1SC2MH087974 (Izquierdo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Izquierdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Izquierdo, A., Belcher, A.M. (2012). Rodent Models of Adaptive Decision Making. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics