Skip to main content

P11: A Potential Biomarker for Posttraumatic Stress Disorder

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 829))

Abstract

Posttraumatic stress disorder (PTSD) is a chronic and disabling anxiety disorder that occurs after a traumatic event. It is associated with an increased risk of suicide and marked deficits in social and occupational functioning. Currently, the diagnosis for PTSD is established on the basis of a patient’s clinical history, mental status examination, duration of symptoms, and clinician administered symptom checklist or patient self-report. However, there are no available laboratory biomarker tests for PTSD. To begin intervention at the earliest possible time, priority must be given to developing objective approaches to determine the presence of PTSD. Thus, using cutting-edge technology and skill to develop a simple blood test or a biomarker to detect PTSD at its earliest and most treatable stage would benefit both physician and patient. Several technologies and skills have been used in the identification biomarker research. We discuss three major methods in this chapter (blood RNA and DNA purification, chromatin immunoprecipitation, and Western blot), which have been used in our study to determine whether p11 is a potential biomarker for PTSD. Using these procedures will not only enhance the study of the molecular mechanisms of PTSD but also help the translation of basic science to a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ursano, R. J., Bell, C., Eth, S., Friedman, M., Norwood, A., Pfefferbaum, B., Pynoos, J. D., Zatzick, D. F., Benedek, D. M., McIntyre, J. S., Charles, S. C., Altshuler, K., Cook, I., Cross, C. D., Mellman, L., Moench, L. A., Norquist, G., Twemlow, S. W., Woods, S., and Yager, J. (2004) Practice guideline for the treatment of patients with acute stress disorder and posttraumatic stress disorder, Am J Psychiatry 161, 3–31.

    Google Scholar 

  2. Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M., and Nelson, C. B. (1995) Posttraumatic stress disorder in the National Comorbidity Survey, Arch Gen Psychiatry 52, 1048–1060.

    Google Scholar 

  3. Friedman, M. J. (2004) Acknowledging the psychiatric cost of war, The New England journal of medicine 351, 75–77.

    Google Scholar 

  4. Hoge, C. W., Castro, C. A., Messer, S. C., McGurk, D., Cotting, D. I., and Koffman, R. L. (2004) Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care, N Engl J Med 351, 13–22.

    Google Scholar 

  5. Sinha, A., Singh, C., Parmar, D., and Singh, M. P. (2007) Proteomics in clinical interventions: achievements and limitations in biomarker development, Life Sci 80, 1345–1354.

    Google Scholar 

  6. Zhang, L., Zhou, R., Xing, G., Hough, C. J., Li, X., and Li, H. (2006) Identification of gene markers based on well validated and subcategorized stressed animals for potential clinical applications in PTSD, Medical hypotheses 66, 309–314.

    Google Scholar 

  7. Schmidt, C. W. (2006) Signs of the times: biomarkers in perspective, Environ Health Perspect 114, A700–705.

    Google Scholar 

  8. Kibler, J. L., Joshi, K., and Ma, M. (2009) Hypertension in relation to posttraumatic stress disorder and depression in the US National Comorbidity Survey, Behav Med 34, 125–132.

    Google Scholar 

  9. Falconer, E. M., Felmingham, K. L., Allen, A., Clark, C. R., McFarlane, A. C., Williams, L. M., and Bryant, R. A. (2008) Developing an integrated brain, behavior and biological response profile in posttraumatic stress disorder (ptsd), J Integr Neurosci 7, 439–456.

    Google Scholar 

  10. Bryant, R. A., Creamer, M., O’Donnell, M., Silove, D., and McFarlane, A. C. (2008) A Multisite Study of Initial Respiration Rate and Heart Rate as Predictors of Posttraumatic Stress Disorder, J Clin Psychiatry.

    Google Scholar 

  11. Kovacic, Z., Henigsberg, N., Pivac, N., Nedic, G., and Borovecki, A. (2008) Platelet serotonin concentration and suicidal behavior in combat related posttraumatic stress disorder, Prog Neuropsychopharmacol Biol Psychiatry 32, 544–551.

    Google Scholar 

  12. Hamner, M. B., and Gold, P. B. (1998) Plasma dopamine beta-hydroxylase activity in psychotic and non-psychotic post-traumatic stress disorder, Psychiatry Res 77, 175–181.

    Google Scholar 

  13. Geuze, E., van Berckel, B. N., Lammertsma, A. A., Boellaard, R., de Kloet, C. S., Vermetten, E., and Westenberg, H. G. (2008) Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder, Mol Psychiatry 13, 74–83, 73.

    Google Scholar 

  14. Morey, R. A., Dolcos, F., Petty, C. M., Cooper, D. A., Hayes, J. P., Labar, K. S., and McCarthy, G. (2008) The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder, J Psychiatr Res.

    Google Scholar 

  15. Lemieux, A., Coe, C. L., and Carnes, M. (2008) Symptom severity predicts degree of T cell activation in adult women following childhood maltreatment, Brain Behav Immun 22, 994–1003.

    Google Scholar 

  16. Rosen, G. M., and Lilienfeld, S. O. (2008) Posttraumatic stress disorder: an empirical evaluation of core assumptions, Clin Psychol Rev 28, 837–868.

    Google Scholar 

  17. Boscarino, J. A. (2008) Psychobiologic predictors of disease mortality after psychological trauma: implications for research and clinical surveillance, J Nerv Ment Dis 196, 100–107.

    Google Scholar 

  18. von Kanel, R., Hepp, U., Traber, R., Kraemer, B., Mica, L., Keel, M., Mausbach, B. T., and Schnyder, U. (2008) Measures of endothelial dysfunction in plasma of patients with posttraumatic stress disorder, Psychiatry Res 158, 363–373.

    Google Scholar 

  19. Song, Y., Zhou, D., Guan, Z., and Wang, X. (2007) Disturbance of serum interleukin-2 and interleukin-8 levels in posttraumatic and ­non-posttraumatic stress disorder earthquake survivors in northern China, Neuroimmunomodulation 14, 248–254.

    Google Scholar 

  20. Pivac, N., Kozaric-Kovacic, D., Mustapic, M., Dezeljin, M., Borovecki, A., Grubisic-Ilic, M., and Muck-Seler, D. (2006) Platelet serotonin in combat related posttraumatic stress disorder with psychotic symptoms, J Affect Disord 93, 223–227.

    Google Scholar 

  21. Muck-Seler, D., Pivac, N., Jakovljevic, M., Sagud, M., and Mihaljevic-Peles, A. (2003) Platelet 5-HT concentration and comorbid depression in war veterans with and without posttraumatic stress disorder, J Affect Disord 75, 171–179.

    Google Scholar 

  22. Spivak, B., Vered, Y., Graff, E., Blum, I., Mester, R., and Weizman, A. (1999) Low platelet-poor plasma concentrations of serotonin in patients with combat-related posttraumatic stress disorder, Biol Psychiatry 45, 840–845.

    Google Scholar 

  23. Pivac, N., Knezevic, J., Kozaric-Kovacic, D., Dezeljin, M., Mustapic, M., Rak, D., Matijevic, T., Pavelic, J., and Muck-Seler, D. (2007) Monoamine oxidase (MAO) intron 13 polymorphism and platelet MAO-B activity in combat-related posttraumatic stress disorder, J Affect Disord 103, 131–138.

    Google Scholar 

  24. Meewisse, M. L., Reitsma, J. B., de Vries, G. J., Gersons, B. P., and Olff, M. (2007) Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis, Br J Psychiatry 191, 387–392.

    Google Scholar 

  25. Ehlert, U., Gaab, J., and Heinrichs, M. (2001) Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: the role of the hypothalamus-pituitary-adrenal axis, Biol Psychol 57, 141–152.

    Google Scholar 

  26. Heber, R., Kellner, M., and Yehuda, R. (2002) Salivary cortisol levels and the cortisol response to dexamethasone before and after EMDR: a case report, J Clin Psychol 58, 1521–1530.

    Google Scholar 

  27. Glover, D. A., and Poland, R. E. (2002) Urinary cortisol and catecholamines in mothers of child cancer survivors with and without PTSD, Psychoneuroendocrinology 27, 805–819.

    Google Scholar 

  28. Yehuda, R., Halligan, S. L., and Bierer, L. M. (2002) Cortisol levels in adult offspring of Holocaust survivors: relation to PTSD symptom severity in the parent and child, Psychoneuroendocrinology 27, 171–180.

    Google Scholar 

  29. Gotovac, K., Sabioncello, A., Rabatic, S., Berki, T., and Dekaris, D. (2003) Flow cytometric determination of glucocorticoid receptor (GCR) expression in lymphocyte subpopulations: lower quantity of GCR in patients with post-traumatic stress disorder (PTSD), Clin Exp Immunol 131, 335–339.

    Google Scholar 

  30. Kesner, Y., Zohar, J., Merenlender, A., Gispan, I., Shalit, F., and Yadid, G. (2009) WFS1 gene as a putative biomarker for development of post-traumatic syndrome in an animal model, Mol Psychiatry 14, 86–94.

    Google Scholar 

  31. Vidovic, A., Vilibic, M., Markotic, A., Sabioncello, A., Gotovac, K., Folnegovic-Smalc, V., and Dekaris, D. (2007) Baseline level of platelet-leukocyte aggregates, platelet CD63 expression, and soluble P-selectin concentration in patients with posttraumatic stress disorder: a pilot study, Psychiatry Res 150, 211–216.

    Google Scholar 

  32. Vaiva, G., Boss, V., Ducrocq, F., Fontaine, M., Devos, P., Brunet, A., Laffargue, P., Goudemand, M., and Thomas, P. (2006) Relationship between posttrauma GABA plasma levels and PTSD at 1-year follow-up, Am J Psychiatry 163, 1446–1448.

    Google Scholar 

  33. Sojka, P., Stalnacke, B. M., Bjornstig, U., and Karlsson, K. (2006) One-year follow-up of patients with mild traumatic brain injury: occurrence of post-traumatic stress-related symptoms at follow-up and serum levels of cortisol, S-100B and neuron-specific enolase in acute phase, Brain Inj 20, 613–620.

    Google Scholar 

  34. Dutton, M. A., Lee, E. W., and Zukowska, Z. (2006) NPY and extreme stress: lessons learned from posttraumatic stress disorder, Exs, 213–222.

    Google Scholar 

  35. Wang, Q., Wang, Z., Zhu, P., and Jiang, J. (2004) Alterations of myelin basic protein and ultrastructure in the limbic system at the early stage of trauma-related stress disorder in dogs, J Trauma 56, 604–610.

    Google Scholar 

  36. Sondergaard, H. P., Hansson, L. O., and Theorell, T. (2004) The inflammatory markers C-reactive protein and serum amyloid A in refugees with and without posttraumatic stress disorder, Clin Chim Acta 342, 93–98.

    Google Scholar 

  37. Garrison, R. L., and Breeding, P. C. (2003) A metabolic basis for fibromyalgia and its related disorders: the possible role of resistance to thyroid hormone, Med Hypotheses 61, 182–189.

    Google Scholar 

  38. Atmaca, M., Kuloglu, M., Tezcan, E., Onal, S., and Ustundag, B. (2002) Neopterin levels and dexamethasone suppression test in posttraumatic stress disorder, Eur Arch Psychiatry Clin Neurosci 252, 161–165.

    Google Scholar 

  39. Baker, D. G., Ekhator, N. N., Kasckow, J. W., Hill, K. K., Zoumakis, E., Dashevsky, B. A., Chrousos, G. P., and Geracioti, T. D., Jr. (2001) Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder, Neuroimmunomodulation 9, 209–217.

    Google Scholar 

  40. Maes, M., Lin, A. H., Delmeire, L., Van Gastel, A., Kenis, G., De Jongh, R., and Bosmans, E. (1999) Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in posttraumatic stress disorder following accidental man-made traumatic events, Biol Psychiatry 45, 833–839.

    Google Scholar 

  41. Reist, C., Kauffmann, C. D., Chicz-Demet, A., Chen, C. C., and Demet, E. M. (1995) REM latency, dexamethasone suppression test, and thyroid releasing hormone stimulation test in posttraumatic stress disorder, Prog Neuropsychopharmacol Biol Psychiatry 19, 433–443.

    Google Scholar 

  42. Kauffman, C. D., Reist, C., Djenderedjian, A., Nelson, J. N., and Haier, R. J. (1987) Biological markers of affective disorders and posttraumatic stress disorder: a pilot study with desipramine, J Clin Psychiatry 48, 366–367.

    Google Scholar 

  43. Pitman, R. K., Gilbertson, M. W., Gurvits, T. V., May, F. S., Lasko, N. B., Metzger, L. J., Shenton, M. E., Yehuda, R., and Orr, S. P. (2006) Clarifying the origin of biological abnormalities in PTSD through the study of identical twins discordant for combat exposure, Ann N Y Acad Sci 1071, 242–254.

    Google Scholar 

  44. Bryant, R. A., Salmon, K., Sinclair, E., and Davidson, P. (2007) Heart rate as a predictor of posttraumatic stress disorder in children, Gen Hosp Psychiatry 29, 66–68.

    Google Scholar 

  45. Chemtob, C. M., and Taylor, K. B. (2003) Mixed lateral preference and parental left-handedness: possible markers of risk for PTSD, J Nerv Ment Dis 191, 332–338.

    Google Scholar 

  46. Milde, A. M., Sundberg, H., Roseth, A. G., and Murison, R. (2003) Proactive sensitizing effects of acute stress on acoustic startle responses and experimentally induced colitis in rats: relationship to corticosterone, Stress 6, 49–57.

    Google Scholar 

  47. Zhang, L., Li, H., Su, T. P., Barker, J. L., Maric, D., Fullerton, C. S., Webster, M. J., Hough, C. J., Li, X. X., and Ursano, R. (2008) p11 is up-regulated in the forebrain of stressed rats by glucocorticoid acting via two specific glucocorticoid response elements in the p11 promoter, Neuroscience 153, 1126–1134.

    Google Scholar 

  48. Su, T. P., Zhang, L., Chung, M. Y., Chen, Y. S., Bi, Y. M., Chou, Y. H., Barker, J. L., Barrett, J. E., Maric, D., Li, X. X., Li, H., Webster, M. J., Benedek, D., Carlton, J. R., and Ursano, R. (2009) Levels of the potential biomarker p11 in peripheral blood cells distinguish patients with PTSD from those with other major psychiatric disorders, Journal of psychiatric research 43, 1078–1085.

    Google Scholar 

Download references

Acknowledgments

We thank Vivek Jayadeva and Stanley Smerin of USUHS for their assistance with editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, L., Ursano, R.J., Li, H. (2012). P11: A Potential Biomarker for Posttraumatic Stress Disorder. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics