Skip to main content

A Stringent Yeast Two-Hybrid Matrix Screening Approach for Protein–Protein Interaction Discovery

  • Protocol
  • First Online:
Two Hybrid Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 812))

Abstract

The yeast two-hybrid (Y2H) system is currently one of the most important techniques for protein–protein interaction (PPI) discovery. Here, we describe a stringent three-step Y2H matrix interaction approach that is suitable for systematic PPI screening on a proteome scale. We start with the identification and elimination of autoactivating strains that would lead to false-positive signals and prevent the identification of interactions. Nonautoactivating strains are used for the primary PPI screen that is carried out in quadruplicate with arrayed preys. Interacting pairs of baits and preys are identified in a pairwise retest step. Only PPI pairs that pass the retest step are regarded as potentially biologically relevant interactions and are considered for further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields S, Song O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–6.

    Google Scholar 

  2. Fromont-Racine M, Rain JC, Legrain P. (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 16, 277–82.

    Google Scholar 

  3. Uetz P, Giot L, Cagney G, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–7.

    Google Scholar 

  4. Walhout AJ, Sordella R, Lu X, et al. (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–22.

    Google Scholar 

  5. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98, 4569–74.

    Google Scholar 

  6. Tong AH, Drees B, Nardelli G, et al. (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–4.

    Google Scholar 

  7. Goehler H, Lalowski M, Stelzl U, et al. (2004) A protein interaction network links GIT1, an enhancer of Huntingtin aggregation, to Huntington’s disease. Mol Cell 15, 853–65.

    Google Scholar 

  8. Colland F, Jacq X, Trouplin V, et al. (2004) Functional proteomics mapping of a human signaling pathway. Genome Res 14, 1324–32.

    Google Scholar 

  9. Formstecher E, Aresta S, Collura V, et al. (2005) Protein interaction mapping: a Drosophila case study. Genome Res 15, 376–84.

    Google Scholar 

  10. Miller JP, Lo RS, Ben-Hur A, et al. (2005) Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci USA 102, 12123–8.

    Google Scholar 

  11. Lim J, Hao T, Shaw C, et al. (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–14.

    Google Scholar 

  12. Kaltenbach LS, Romero E, Becklin RR, et al. (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3, e82.

    Google Scholar 

  13. Markson G, Kiel C, Hyde R, et al. (2009) Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network. Genome Res 19, 1905–11.

    Google Scholar 

  14. van Wijk SJ, de Vries SJ, Kemmeren P, et al. (2009) A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol 5, 295.

    Google Scholar 

  15. Bell R, Hubbard A, Chettier R, et al. (2009) A human protein interaction network shows conservation of aging processes between human and invertebrate species. PLoS Genet 5, e1000414.

    Google Scholar 

  16. Giot L, Bader JS, Brouwer C, et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302, 1727–36.

    Google Scholar 

  17. Li S, Armstrong CM, Bertin N, et al. (2004) A map of the interactome network of the metazoan C. elegans. Science 303, 540–3.

    Google Scholar 

  18. Stelzl U, Worm U, Lalowski M, et al. (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–68.

    Google Scholar 

  19. Rual JF, Venkatesan K, Hao T, et al. (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–8.

    Google Scholar 

  20. LaCount DJ, Vignali M, Chettier R, et al. (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–7.

    Google Scholar 

  21. Parrish JR, Gulyas KD, Finley RL, Jr. (2006) Yeast two-hybrid contributions to interactome mapping. Curr Opin Biotechnol 17, 387–93.

    Google Scholar 

  22. Yu H, Braun P, Yildirim MA, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–10.

    Google Scholar 

  23. Parrish JR, Yu J, Liu G, et al. (2007) A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8, R130.

    Google Scholar 

  24. Braun P, Tasan M, Dreze M, et al. (2009) An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 6, 91–7.

    Google Scholar 

  25. Figeys D. (2008) Mapping the human protein interactome. Cell Res 18, 716–24.

    Google Scholar 

  26. Schwartz AS, Yu J, Gardenour KR, Finley RL, Jr., Ideker T. (2009) Cost-effective strategies for completing the interactome. Nat Methods 6, 55–61.

    Google Scholar 

  27. Venkatesan K, Rual JF, Vazquez A, et al. (2009) An empirical framework for binary interactome mapping. Nat Methods 6, 83–90.

    Google Scholar 

  28. Walhout AJ, Vidal M. (1999) A genetic strategy to eliminate self-activator baits prior to high-throughput yeast two-hybrid screens. Genome Res 9, 1128–34.

    Google Scholar 

  29. Vidalain PO, Boxem M, Ge H, Li S, Vidal M. (2004) Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32, 363–70.

    Google Scholar 

  30. Rajagopala SV, Hughes KT, Uetz P. (2009) Benchmarking yeast two-hybrid systems using the interactions of bacterial motility proteins. Proteomics 9, 5296–302.

    Google Scholar 

  31. Golemis EA, Serebriiskii I, Finley RL, Jr., Kolonin MG, Gyuris J, Brent R. (2009) Interaction trap/two-hybrid system to identify interacting proteins. Curr Protoc Protein Sci Chapter 19, Unit19 2.

    Google Scholar 

  32. Estojak J, Brent R, Golemis EA. (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15, 5820–9.

    Google Scholar 

  33. Simonis N, Rual JF, Carvunis AR, et al. (2009) Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods 6, 47–54.

    Google Scholar 

  34. Eyckerman S, Lemmens I, Lievens S, et al. (2002) Design and use of a mammalian protein-protein interaction trap (MAPPIT). Sci STKE 2002, pl18.

    Google Scholar 

  35. Stelzl U, Wanker EE. (2006) The value of high quality protein-protein interaction networks for systems biology. Curr Opin Chem Biol 10, 551–8.

    Google Scholar 

  36. Suter B, Kittanakom S, Stagljar I. (2008) Two-hybrid technologies in proteomics research. Curr Opin Biotechnol 19, 316–23.

    Google Scholar 

  37. Sanderson CM. (2009) The Cartographers toolbox: building bigger and better human protein interaction networks. Brief Funct Genomic Proteomic 8, 1–11.

    Google Scholar 

  38. Lamesch P, Li N, Milstein S, et al. (2007) hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307–15.

    Google Scholar 

  39. Goshima N, Kawamura Y, Fukumoto A, et al. (2008) Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat Methods 5, 1011–7.

    Google Scholar 

  40. Temple G, Gerhard DS, Rasooly R, et al. (2009) The completion of the Mammalian Gene Collection (MGC). Genome Res 19, 2324–33.

    Google Scholar 

  41. Chung CT, Niemela SL, Miller RH. (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86, 2172–5.

    Google Scholar 

  42. Jin F, Hazbun T, Michaud GA, et al. (2006) A pooling-deconvolution strategy for biological network elucidation. Nat Methods 3, 183–9.

    Google Scholar 

  43. Xin X, Rual JF, Hirozane-Kishikawa T, et al. (2009) Shifted Transversal Design smart-pooling for high coverage interactome mapping. Genome Res 19, 1262–9.

    Google Scholar 

  44. Jansen R, Gerstein M. (2004) Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Curr Opin Microbiol 7, 535–45.

    Google Scholar 

  45. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3, 140.

    Google Scholar 

  46. Lage K, Karlberg EO, Storling ZM, et al. (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25, 309–16.

    Google Scholar 

  47. Kohler S, Bauer S, Horn D, Robinson PN. (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82, 949–58.

    Google Scholar 

  48. Taylor IW, Linding R, Warde-Farley D, et al. (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27, 199–204.

    Google Scholar 

  49. Pujana MA, Han JD, Starita LM, et al. (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39, 1338–49.

    Google Scholar 

  50. Deribe YL, Wild P, Chandrashaker A, et al. (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci Signal 2, ra84.

    Google Scholar 

  51. Grelle G, Kostka S, Otto A, et al. (2006) Identification of VCP/p97, carboxyl terminus of Hsp70-interacting protein (CHIP), and amphiphysin II interaction partners using membrane-based human proteome arrays. Mol Cell Proteomics 5, 234–44.

    Google Scholar 

  52. Dickey CA, Patterson C, Dickson D, Petrucelli L. (2007) Brain CHIP: removing the culprits in neurodegenerative disease. Trends Mol Med 13, 32–8.

    Google Scholar 

  53. Jarczowski F, Fischer G, Edlich F. (2008) FKBP36 forms complexes with clathrin and Hsp72 in spermatocytes. Biochemistry 47, 6946–52.

    Google Scholar 

  54. Mackay HJ, Twelves CJ. (2007) Targeting the protein kinase C family: are we there yet? Nat Rev Cancer 7, 554–62.

    Google Scholar 

  55. Roffey J, Rosse C, Linch M, Hibbert A, McDonald NQ, Parker PJ. (2009) Protein kinase C intervention: the state of play. Curr Opin Cell Biol 21, 268–79.

    Google Scholar 

Download references

Acknowledgments

J.M. Worseck, A. Grossmann, and M. Weimann contributed equally to the writing of this protocol. We would like to thank Erich Wanker (MDC-Berlin) and the members of his group for continuing support and for their contributions in developing the Y2H setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Stelzl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Worseck, J.M., Grossmann, A., Weimann, M., Hegele, A., Stelzl, U. (2012). A Stringent Yeast Two-Hybrid Matrix Screening Approach for Protein–Protein Interaction Discovery. In: Suter, B., Wanker, E. (eds) Two Hybrid Technologies. Methods in Molecular Biology, vol 812. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-455-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-455-1_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-454-4

  • Online ISBN: 978-1-61779-455-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics