Skip to main content

Use of Cre-Lox Technology to Analyze Integrin Functions in Astrocytes

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 814))

Abstract

Astrocytes communicate with the vascular endothelium via direct cell–cell contacts as well as a variety of secreted growth factors and extracellular matrix (ECM) proteins. Integrins are heterodimeric cell surface receptors for ECM protein ligands, and many integrin subunits are expressed in astrocytes. Here, we will discuss gene deletion strategies in mice that have deciphered functions for specific integrins in astrocyte-endothelial cell adhesion and signaling. Specifically, we will detail how Cre-lox molecular genetic techniques have revealed important roles for integrin αvβ8 in regulating cerebral blood vessel development and homeostasis. First, we will detail how to generate Cre-lox mutant mouse models that our group and others have used to study αvβ8 integrin in embryonic astroglial progenitors and postnatal astrocytes. Second, we will discuss how viral-delivered Cre can be used to acutely delete integrin genes in astrocytes within defined anatomic regions of the brain. Third, detailed in vivo methods to verify Cre-mediated gene recombination in astrocytes will be presented. Lastly, we will present one experimental strategy to determine how integrin gene deletion affects astrocyte-endothelial cell coupling in the CNS. While this review focuses on the generation and characterization of mice lacking αvβ8 integrin, these experimental strategies can be expanded to analyze other cell adhesion and signaling genes important for astroglial-mediated regulation of blood vessel development and homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarty, J. H. (2005) Cell biology of the neurovascular unit: implications for drug delivery across the blood-brain barrier, Assay Drug Dev Technol 3, 89–95.

    Article  PubMed  CAS  Google Scholar 

  2. McCarty, J. H. (2009) Integrin-mediated regulation of neurovascular development, physiology and disease, Cell Adh Migr 3, 211–215.

    Article  PubMed  Google Scholar 

  3. Milner, R., and Campbell, I. L. (2002) The integrin family of cell adhesion molecules has multiple functions within the CNS, J Neurosci Res 69, 286–291.

    Article  PubMed  CAS  Google Scholar 

  4. Abbott, N. J., Ronnback, L., and Hansson, E. (2006) Astrocyte-endothelial interactions at the blood-brain barrier, Nat Rev Neurosci 7, 41–53.

    Article  PubMed  CAS  Google Scholar 

  5. Sixt, M., Engelhardt, B., Pausch, F., Hallmann, R., Wendler, O., and Sorokin, L. M. (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis, J Cell Biol 153, 933–946.

    Article  PubMed  CAS  Google Scholar 

  6. Wagner, S., Tagaya, M., Koziol, J. A., Quaranta, V., and del Zoppo, G. J. (1997) Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin alpha 6 beta 4 during focal cerebral ischemia/reperfusion, Stroke 28, 858–865.

    Article  PubMed  CAS  Google Scholar 

  7. Okada, Y., Copeland, B. R., Hamann, G. F., Koziol, J. A., Cheresh, D. A., and del Zoppo, G. J. (1996) Integrin alphavbeta3 is expressed in selected microvessels after focal cerebral ischemia, Am J Pathol 149, 37–44.

    PubMed  CAS  Google Scholar 

  8. Shimamura, N., Matchett, G., Yatsushige, H., Calvert, J. W., Ohkuma, H., and Zhang, J. (2006) Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model, Stroke 37, 1902–1909.

    Article  PubMed  CAS  Google Scholar 

  9. McCarty, J. H. (2009) Cell adhesion and signaling networks in brain neurovascular units, Curr Opin Hematol 16, 209–214.

    Article  PubMed  Google Scholar 

  10. McCarty, J. H., Monahan-Earley, R. A., Brown, L. F., Keller, M., Gerhardt, H., Rubin, K., Shani, M., Dvorak, H. F., Wolburg, H., Bader, B. L., Dvorak, A. M., and Hynes, R. O. (2002) Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins, Mol Cell Biol 22, 7667–7677.

    Article  PubMed  CAS  Google Scholar 

  11. Mobley, A. K., Tchaicha, J. H., Shin, J., Hossain, M. G., and McCarty, J. H. (2009) {beta}8 integrin regulates neurogenesis and neurovascular homeostasis in the adult brain, J Cell Sci 122, 1842–1851.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu, J., Motejlek, K., Wang, D., Zang, K., Schmidt, A., and Reichardt, L. F. (2002) beta8 integrins are required for vascular morphogenesis in mouse embryos, Development 129, 2891–2903.

    PubMed  CAS  Google Scholar 

  13. Milner, R., Huang, X., Wu, J., Nishimura, S., Pytela, R., Sheppard, D., and ffrench-Constant, C. (1999) Distinct roles for astrocyte alphavbeta5 and alphavbeta8 integrins in adhesion and migration, J Cell Sci 112 ( Pt 23), 4271–4279.

    PubMed  CAS  Google Scholar 

  14. McCarty, J. H., Lacy-Hulbert, A., Charest, A., Bronson, R. T., Crowley, D., Housman, D., Savill, J., Roes, J., and Hynes, R. O. (2004) Selective ablation of {alpha}v integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death, Development.

    Google Scholar 

  15. Proctor, J. M., Zang, K., Wang, D., Wang, R., and Reichardt, L. F. (2005) Vascular development of the brain requires beta8 integrin expression in the neuroepithelium, J Neurosci 25, 9940–9948.

    Article  PubMed  CAS  Google Scholar 

  16. Cambier, S., Gline, S., Mu, D., Collins, R., Araya, J., Dolganov, G., Einheber, S., Boudreau, N., and Nishimura, S. L. (2005) Integrin alpha(v)beta8-mediated activation of transforming growth factor-beta by perivascular astrocytes: an angiogenic control switch, Am J Pathol 166, 1883–1894.

    Article  PubMed  CAS  Google Scholar 

  17. Mu, Z., Yang, Z., Yu, D., Zhao, Z., and Munger, J. S. (2008) TGFbeta1 and TGFbeta3 are partially redundant effectors in brain vascular morphogenesis, Mech Dev 125, 508–516.

    Article  PubMed  CAS  Google Scholar 

  18. Tchaicha, J. H., Mobley, A. K., Hossain, M. G., Aldape, K. D., and McCarty, J. H. A mosaic mouse model of astrocytoma identifies alphavbeta8 integrin as a negative regulator of tumor angiogenesis, Oncogene 29, 4460–4472.

    Google Scholar 

  19. Hirrlinger, P. G., Scheller, A., Braun, C., Hirrlinger, J., and Kirchhoff, F. (2006) Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2, Glia 54, 11–20.

    Article  PubMed  Google Scholar 

  20. Bader, B. L., Rayburn, H., Crowley, D., and Hynes, R. O. (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins, Cell 95, 507–519.

    Article  PubMed  CAS  Google Scholar 

  21. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain, Nat Genet 21, 70–71.

    Article  PubMed  CAS  Google Scholar 

  22. Lewandoski, M. (2001) Conditional control of gene expression in the mouse, Nat Rev Genet 2, 743–755.

    Article  PubMed  CAS  Google Scholar 

  23. Mortensen, R. (2006) Overview of gene targeting by homologous recombination, Curr Protoc Mol Biol Chapter 23, Unit 23 21.

    Google Scholar 

  24. Mortensen, R. (2007) Overview of gene targeting by homologous recombination, Curr Protoc Neurosci Chapter 4, Unit 4 29.

    Google Scholar 

  25. Bajenaru, M. L., Zhu, Y., Hedrick, N. M., Donahoe, J., Parada, L. F., and Gutmann, D. H. (2002) Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation, Mol Cell Biol 22, 5100–5113.

    Article  PubMed  CAS  Google Scholar 

  26. Zhuo, L., Theis, M., Alvarez-Maya, I., Brenner, M., Willecke, K., and Messing, A. (2001) hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo, Genesis 31, 85–94.

    Article  PubMed  CAS  Google Scholar 

  27. McLaughlin, M. E., Kruger, G. M., Slocum, K. L., Crowley, D., Michaud, N. A., Huang, J., Magendantz, M., and Jacks, T. (2007) The Nf2 tumor suppressor regulates cell-cell adhesion during tissue fusion, Proc Natl Acad Sci U S A 104, 3261–3266.

    Article  PubMed  CAS  Google Scholar 

  28. Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P. C., Bock, R., Klein, R., and Schutz, G. (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety, Nat Genet 23, 99–103.

    Article  PubMed  CAS  Google Scholar 

  29. Mori, T., Tanaka, K., Buffo, A., Wurst, W., Kuhn, R., and Gotz, M. (2006) Inducible gene deletion in astroglia and radial glia--a valuable tool for functional and lineage analysis, Glia 54, 21–34.

    Article  PubMed  Google Scholar 

  30. Branda, C. S., and Dymecki, S. M. (2004) Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice, Dev Cell 6, 7–28.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu, H., Acquaviva, J., Ramachandran, P., Boskovitz, A., Woolfenden, S., Pfannl, R., Bronson, R. T., Chen, J. W., Weissleder, R., Housman, D. E., and Charest, A. (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis, Proc Natl Acad Sci U S A 106, 2712–2716.

    Article  PubMed  CAS  Google Scholar 

  32. Forni, P. E., Scuoppo, C., Imayoshi, I., Taulli, R., Dastru, W., Sala, V., Betz, U. A., Muzzi, P., Martinuzzi, D., Vercelli, A. E., Kageyama, R., and Ponzetto, C. (2006) High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly, J Neurosci 26, 9593–9602.

    Article  PubMed  CAS  Google Scholar 

  33. Naiche, L. A., and Papaioannou, V. E. (2007) Cre activity causes widespread apoptosis and lethal anemia during embryonic development, Genesis 45, 768–775.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants awarded to J. H. M. from the National Institutes of Neurological Disease and Stroke (R01NS059876) and the Ellison Medical Foundation (AG-NS-0324-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. McCarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mobley, A.K., McCarty, J.H. (2012). Use of Cre-Lox Technology to Analyze Integrin Functions in Astrocytes. In: Milner, R. (eds) Astrocytes. Methods in Molecular Biology, vol 814. Humana Press. https://doi.org/10.1007/978-1-61779-452-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-452-0_37

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-451-3

  • Online ISBN: 978-1-61779-452-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics