Skip to main content

iTRAQ Proteomics Profiling of Regulatory Proteins During Oligodendrocyte Differentiation

  • Protocol
  • First Online:
Expression Profiling in Neuroscience

Part of the book series: Neuromethods ((NM,volume 64))

  • 612 Accesses

Abstract

Recent evolution in proteomics approaches from two-dimensional gel electrophoresis to peptide-based “shotgun proteomics” methods has greatly enhanced the abilities of scientists to uncover expression changes among “low abundant” proteins. Shotgun proteomics methods typically employ stable isotope labeling techniques to distinguish peptides from the various sources that are compared. Recently, a new shotgun quantitative proteomics technology called isobaric tags for relative and absolute quantification (iTRAQ) has been developed for protein expression analysis. The major strength of the iTRAQ technology is its ability to compare the proteomic changes among multiple samples in a single experiment. Here we present a protocol on using the 8-plex iTRAQ approach for the discovery of molecular targets in oligodendrocyte progenitor cells during rapamycin-induced inhibition of differentiation. We provide the technical details on peptide labeling, chromatography, mass spectrometry, database search, and bioinformatics procedures for the identification of differentially expressed proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noorbakhsh F, Overall CM, Power C (2009) Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends Neurosci 32, 88–100

    Article  PubMed  CAS  Google Scholar 

  2. Gygi SP, Rochon Y, Franza BR et al (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19, 1720–1730

    PubMed  CAS  Google Scholar 

  3. Bayes A, Grant SG (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10, 635–646

    Article  PubMed  CAS  Google Scholar 

  4. Tyler WA, Jain MR, Cifelli SE et al (2011) Proteomic identification of novel targets regulated by the mammalian target of rapamycin pathway during oligodendrocyte differentiation. Glia 59, 1754–1769

    Google Scholar 

  5. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999

    Article  PubMed  CAS  Google Scholar 

  6. Wu C, Parrott AM, Liu T et al (2011) Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach. J Proteomics 74, 2498–2509

    Article  PubMed  CAS  Google Scholar 

  7. Fu C, Wu C, Liu T et al (2009) Elucidation of thioredoxin target protein networks in mouse. Mol Cell Proteomics 8, 1674–1687

    Article  PubMed  CAS  Google Scholar 

  8. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–386

    Article  PubMed  CAS  Google Scholar 

  9. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3,1154-1169

    Article  PubMed  CAS  Google Scholar 

  10. Liu T, Donahue KC, Hu J et al (2007) Identi-fication of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord. J Proteome Res 6, 2565–2575

    Article  PubMed  CAS  Google Scholar 

  11. Jain MR, Bian S, Liu T et al (2009) Altered proteolytic events in experimental autoimmune encephalomyelitis discovered by iTRAQ shotgun proteomics analysis of spinal cord. Proteome Sci 7, 25

    Article  PubMed  Google Scholar 

  12. Grant JE, Hu J, Liu T et al (2007) Post-translational modifications in the rat lumbar spinal cord in experimental autoimmune encephalomyelitis. J Proteome Res 6, 2786–2791

    Article  PubMed  CAS  Google Scholar 

  13. Hu J, Qian J, Borisov O et al (2006) Optimized proteomic analysis of a mouse model of cerebellar dysfunction using amine-specific isobaric tags. Proteomics 6, 4321–4334

    Article  PubMed  CAS  Google Scholar 

  14. Liu T, Hu J, Li H (2009) iTRAQ-based shotgun neuroproteomics. Methods Mol Biol 566, 201–216

    Article  PubMed  CAS  Google Scholar 

  15. Jain MR, Liu T, Hu J et al (2008) Quantitative Proteomic Analysis of Formalin Fixed Paraffin Embedded Oral HPV Lesions from HIV Patients. Open Proteomics J 1, 40–45

    Article  PubMed  CAS  Google Scholar 

  16. Hunt DF, Yates JR, 3rd, Shabanowitz J et al (1986) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A 83, 6233–6237

    Article  PubMed  CAS  Google Scholar 

  17. Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5, 699–711

    Article  PubMed  CAS  Google Scholar 

  18. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17, 596–603

    Article  PubMed  CAS  Google Scholar 

  19. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175

    Article  PubMed  CAS  Google Scholar 

  20. Sarbassov DD, Ali SM, Kim DH et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoske-leton. Curr Biol 14, 1296–1302

    Article  PubMed  CAS  Google Scholar 

  21. Tyler WA, Gangoli N, Gokina P et al (2009) Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J Neurosci 29, 6367–6378

    Article  PubMed  CAS  Google Scholar 

  22. Bibollet-Bahena O, Almazan G (2009) IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways. J Neurochem 109, 1440–1451

    Article  PubMed  CAS  Google Scholar 

  23. Shilov IV, Seymour SL, Patel AA et al (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6, 1638–1655

    Article  PubMed  CAS  Google Scholar 

  24. Peng J, Elias JE, Thoreen CC et al (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2, 43–50

    Article  PubMed  CAS  Google Scholar 

  25. Kapp EA, Schutz F, Connolly LM et al (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5, 3475–3490

    Article  PubMed  CAS  Google Scholar 

  26. Resing KA, Meyer-Arendt K, Mendoza AM et al (2004) Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics. Anal Chem 76, 3556–3568

    Article  PubMed  CAS  Google Scholar 

  27. Elias JE, Haas W, Faherty BK et al (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2, 667–675

    Article  PubMed  CAS  Google Scholar 

  28. Keller A, Nesvizhskii AI, Kolker E et al (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74, 5383–5392

    Article  PubMed  CAS  Google Scholar 

  29. Nesvizhskii AI, Keller A, Kolker E et al (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646–4658

    Article  PubMed  CAS  Google Scholar 

  30. Stark GR, Stein WH, Moore S (1960) Reactions of the Cyanate Present in Aqueous Urea with Amino Acids and Proteins. J Biochem Mol Biol 235, 3177–3181

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by National Institutes of Health: Grant no. NS37560, Grant no. NS056097 and Grant no. NS046593; National Multiple Sclerosis Society: Grant no. RG4015A2/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jain, M.R., Liu, T., Wood, T.L., Li, H. (2012). iTRAQ Proteomics Profiling of Regulatory Proteins During Oligodendrocyte Differentiation. In: Karamanos, Y. (eds) Expression Profiling in Neuroscience. Neuromethods, vol 64. Humana Press. https://doi.org/10.1007/978-1-61779-448-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-448-3_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-447-6

  • Online ISBN: 978-1-61779-448-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics