Skip to main content

Direct Analysis of Underivatized Amino Acids in Plant Extracts by LC-MS-MS

  • Protocol
  • First Online:
Book cover Amino Acid Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 828))

Abstract

In this chapter, we describe a method for quantification of 20 proteinogenic amino acids as well as 13 15N-labeled amino acids by liquid chromatography–mass spectrometry without the need for derivatization and use of organic solvents. Analysis of the underivatized amino acids is performed by liquid chromatography–electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) in the positive ESI mode. Separation is achieved on a strong cation exchange (SCX) column (Luna 5 μm SCX 100 Å) with 30 mM ammonium acetate in water (A) and 5% acetic acid in water (B). Quantification is accomplished by use of d5-phenylalanine as internal standard achieving limits of detection of 0.1–3.0 μM. The method was successfully applied for the determination of proteinogenic and 15N-labeled amino acids in plant extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins C and Beevers L (1990) Synthesis, transport and utilization of translocated solutes of nitrogen. In: Abroyl, YP (ed) Nitrogen in higher plants, John Wiley and Sons, New York

    Google Scholar 

  2. Guerrero MG, Vega JM and Losada M (1981) The assimilatory nitrate-reducing system and its regulation. Annu Rev Plant Physiol 32:169–204

    Article  CAS  Google Scholar 

  3. Miflin BJ and Lea PJ (1977) Amino acid metabolism. Annu Rev Plant Physiol 28:299–329

    Article  CAS  Google Scholar 

  4. Hewitt EJ (1975) Assimilatory nitrate-nitrite reduction. Annu Rev Plant Physiol 26:73–100

    Article  CAS  Google Scholar 

  5. Fritz C et al (2006) Impact of the C-N status on the amino acid profile in tobacco source leaves. Plant Cell Environ 29:2055–2076

    Article  PubMed  CAS  Google Scholar 

  6. Roth M (1971) Fluorescence reaction for amino acids. Anal Chem 43:880–882

    Article  PubMed  CAS  Google Scholar 

  7. Einarsson S, Josefsson B and Lagerkvist S (1983) Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J Chromatogr 282:609–618

    Article  CAS  Google Scholar 

  8. Blankenship DT et al (1989) High-sensitivity amino acid analysis by derivatization with o-phthalaldehyde and 9-fluorenylmethyl chloroformate using fluorescence detection: Applications in protein structure determination. Anal Biochem 178:227–232

    Article  PubMed  CAS  Google Scholar 

  9. Calder AG et al (1999) Quantitation of blood and plasma amino acids using isotope dilution electron impact gas chromatography/mass spectrometry with U-13C amino acids as internal standards. Rapid Commun Mass Spectrom 13:2080–2083

    Article  PubMed  CAS  Google Scholar 

  10. Wood PL, Khan MA and Moskal JR (2006) Neurochemical analysis of amino acids, polyamines and carboxylic acids: GC-MS quantitation of tBDMS derivatives using ammonia positive chemical ionization. J Chromatogr B 831:313–319

    Article  CAS  Google Scholar 

  11. Chace DH (2001) Mass spectrometry in the clinical laboratory. Chem Rev 101:445–478

    Article  PubMed  CAS  Google Scholar 

  12. Husek P and Simek P (2006) Alkyl chloroformates in sample derivatization strategies for GC analysis. Review on a decade use of the reagents as esterifying agents. Curr Pharm Anal 2:23–43

    Article  CAS  Google Scholar 

  13. Monton MRN and Soga T (2007) Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A 1168:237–246

    Article  PubMed  CAS  Google Scholar 

  14. Soga T et al (2004) Qualitative and quantitative analysis of amino acids by capillary electrophoresis-electrospray ionization-tandem mass spectrometry. Electrophoresis 25:1964–1972

    Article  PubMed  CAS  Google Scholar 

  15. Soga T and Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72:1236–1241

    Article  PubMed  CAS  Google Scholar 

  16. Chaimbault P et al (1999) Determination of 20 underivatized proteinic amino acids by ion-pairing chromatography and pneumatically assisted electrospray mass spectrometry. J Chromatogr A 855:191–202

    Article  PubMed  CAS  Google Scholar 

  17. Petritis K et al (2000) Parameter optimization for the analysis of underivatized protein amino acids by liquid chromatography and ionspray tandem mass spectrometry. J Chromatogr A 896:253–263

    Article  PubMed  CAS  Google Scholar 

  18. Qu J et al (2002) Rapid determination of underivatized pyroglutamic acid, glutamic acid, glutamine and other relevant amino acids in fermentation media by LC-MS-MS. Analyst 127:66–69

    Article  PubMed  CAS  Google Scholar 

  19. Piraud M et al (2005) Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom 19:1587–1602

    Article  PubMed  CAS  Google Scholar 

  20. Armstrong M, Jonscher K and Reisdorph NA (2007) Analysis of 25 underivatized amino acids in human plasma using ion-pairing reversed-phase liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21: 2717–2726

    Article  PubMed  CAS  Google Scholar 

  21. Husek P. and Sweeley CC (1991) Gas chromatographic separation of protein amino acids in 4 minutes. J High Resol Chromatogr 14:751–753

    Article  CAS  Google Scholar 

  22. Husek P (1991) Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr 552:289–299

    Article  CAS  Google Scholar 

  23. Bonfiglio R et al (1999) The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun Mass Spectrom 13:1175–1185

    Article  PubMed  CAS  Google Scholar 

  24. Hsieh Y et al (2001) Quantitative screening and matrix effect studies of drug discovery compounds in monkey plasma using fast-gradient liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 15:2481–2487

    Article  PubMed  CAS  Google Scholar 

  25. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196

    Article  CAS  Google Scholar 

  26. Langrock T, Czihal P and Hoffmann R (2006) Amino acid analysis by hydrophilic interaction chromatography coupled on-line to ­electrospray ionization mass spectrometry. Amino Acids 30:291–297

    Article  PubMed  CAS  Google Scholar 

  27. Schlichtherle-Cerny H, Affolter M and Cerny C (2003) Hydrophilic interaction liquid chromatography coupled to electrospray mass spectrometry of small polar compounds in food analysis. Anal Chem 75:2349–2354

    Article  PubMed  CAS  Google Scholar 

  28. Welch LE et al (1989) Comparison of pulsed coulometric detection and potential-sweep-pulsed coulometric detection for underivatized amino acids in liquid chromatography. Anal Chem 61:555–559

    Article  PubMed  CAS  Google Scholar 

  29. Luo P, Zhang F and Baldwin RP (1991) Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode. Anal Chem 63:1702–1707

    Article  CAS  Google Scholar 

  30. Thiele B et al (2008) Analysis of amino acids without derivatization in barley extracts by LC-MS-MS. Anal Bioanal Chem 391:2663–2672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Matthias Gehre (Helmholtz Centre for Environmental Research – UFZ Leipzig, Germany) for providing the 15N-labeled amino acids. We also like to thank Bernd Kastenholz for his assistance in the optimization of the leaf extraction procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Thiele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thiele, B., Stein, N., Oldiges, M., Hofmann, D. (2012). Direct Analysis of Underivatized Amino Acids in Plant Extracts by LC-MS-MS. In: Alterman, M., Hunziker, P. (eds) Amino Acid Analysis. Methods in Molecular Biology, vol 828. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-445-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-445-2_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-444-5

  • Online ISBN: 978-1-61779-445-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics