Rho GTPases pp 107-119 | Cite as

A Quantitative Fluorometric Approach for Measuring the Interaction of RhoGDI with Membranes and Rho GTPases

  • Jared Johnson
  • Richard A. CerioneEmail author
  • Jon W. Erickson
Part of the Methods in Molecular Biology book series (MIMB, volume 827)


Tight regulation of Rho GTPase-signaling functions requires the proper localization of proteins to the membrane and cytosolic compartments, which can themselves undergo reconfiguration in response to signaling events. The importance of lipid-mediated membrane signal transduction continues to emerge as a critical event in many Rho GTPase-signaling pathways. Here we describe methods for the reconstitution of lipid-modified Rho GTPases with defined lipid vesicles and how this system can be used as a real-time assay for monitoring protein–membrane interactions.

Key words

Cdc42 Rho Fluorescence resonance energy transfer Synthetic lipid vesicles Guanine nucleotide dissociation inhibitor 


  1. 1.
    Lemmon, M.A.,  Ferguson,  K.M., O’Brien,  R., Sigler, P.B., and Schlessinger, J. (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92, 10472–10476PubMedCrossRefGoogle Scholar
  2. 2.
    Lemmon,  M.A., and Ferguson,  K.M. (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350, 1–18PubMedCrossRefGoogle Scholar
  3. 3.
    Heo, W.D., Inoue, T., Park, W.S., Kim, M.L., Park, B.O., Wandless, T.J., and Meyer, T. (2006) PI(3,4,5)P3  and PI(4,5)P2  lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461PubMedCrossRefGoogle Scholar
  4. 4.
    Yeung, T., Terebiznik, M., Yu, L., Silvius, J., Abidi, W.M., Philips, M., Levine, T., Kapus, A., and Grinstein, S. (2006) Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351PubMedCrossRefGoogle Scholar
  5. 5.
    Yeung, T., Gilbert, G.E., Shi, J., Silvius, J., Kapus, A., and Grinstein, S. (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213PubMedCrossRefGoogle Scholar
  6. 6.
    Young, B.P.,  Shin, J.J.,  Orij, R., Chao, J.T., Li, S.C., Guan, X.L., Khong, A., Jan, E., Wenk, M.R., Prinz, W.A., Smits, G.J., and Loewen, C.J. (2010) Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329, 1085–1089PubMedCrossRefGoogle Scholar
  7. 7.
    Várnai, P., and Balla, T. (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to Myo-[3  H]inositol-labeled phosphoinositide pools. J Cell Biol 143, 501–510PubMedCrossRefGoogle Scholar
  8. 8.
    Stauffer, T.P., Ahn, S., and Meyer, T. (1998) Receptor-induced transient reduction in plasma membrane PtdIns (4,5) P2 concentration monitored in living cells. Curr Biol 8, 343–346PubMedCrossRefGoogle Scholar
  9. 9.
    Botelho, R.J., Teruel, M., Dierckman, R., Anderson, R., Wells, A., York, J.D., Meyer, T., and Grinstein, S. (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151, 1353–1368PubMedCrossRefGoogle Scholar
  10. 10.
    Kozma, R., Ahmed, S., Best, A., and Lim, L. (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3 T3 fibroblasts. Mol Cell Biol 15, 1942–1952PubMedGoogle Scholar
  11. 11.
    Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509–514PubMedCrossRefGoogle Scholar
  12. 12.
    Cerione, R.A. (2004) Cdc42:  new roads to travel. Trends Cell Biol 14,127–132PubMedCrossRefGoogle Scholar
  13. 13.
    Michaelson, D., Silletti, J., Murphy, G., D’Eustachio, P., Rush, M., and Philips, M.R. (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152, 111–126PubMedCrossRefGoogle Scholar
  14. 14.
    Gosser, Y.Q., Nomanbhoy, T.K., Aghazadeh, B., Manor, D., Combs, C., Cerione, R.A., Rosen, M.K. (1997) C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. Nature 387, 814–819PubMedCrossRefGoogle Scholar
  15. 15.
    Hoffman, G.R., Nassar, N., and Cerione, R.A. (2000) Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100:345–356PubMedCrossRefGoogle Scholar
  16. 16.
    Nomanbhoy, T., Erickson, J.W., and Cerione, R.A. (1999) Kinetics of Cdc42 Membrane Extraction by Rho-GDI monitored by real-time fluorescence resonance energy transfer. Biochemisry 38, 1744–1750CrossRefGoogle Scholar
  17. 17.
    Johnson, J.L.,  Erickson, J.W.,  and Cerione, R.A. (2009) New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J Biol Chem 284, 23860–23871PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jared Johnson
    • 1
  • Richard A. Cerione
    • 1
    • 2
    Email author
  • Jon W. Erickson
    • 1
  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  2. 2.Department of Molecular MedicineCornell UniversityIthacaUSA

Personalised recommendations