Advertisement

Rho GTPases pp 87-95 | Cite as

Posttranslational Lipid Modification of Rho Family Small GTPases

  • Natalia Mitin
  • Patrick J. Roberts
  • Emily J. Chenette
  • Channing J. Der
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 827)

Abstract

The Rho family comprises a major branch of the Ras superfamily of small GTPases. A majority of Rho GTPases are synthesized as inactive, cytosolic proteins. They then undergo posttranslational modification by isoprenoid or fatty acid lipids, and together with additional carboxyl-terminal sequences target Rho GTPases to specific membrane and subcellular compartments essential for function. We summarize the use of biochemical and cellular assays and pharmacologic inhibitors instrumental for the study of the role of posttranslational lipid modifications and processing in Rho GTPase biology.

Key words

CAAX motif Farnesylation Geranylgeranylation Palmitoylation Ras-converting enzyme 1 Isoprenylcysteine carboxyl methyltransferase 

Notes

Acknowledgments

This work was supported, in whole or in part, by National Institutes of Health Grants CA063071, CA67771, and CA92240 to C.J.D.

References

  1. 1.
    Colicelli, J. (2004) Human RAS superfamily proteins and related GTPases. Sci STKE 2004(250), RE13.Google Scholar
  2. 2.
    Wennerberg, K., Rossman, K.L., and Der, C.J. (2005) The Ras superfamily at a glance. J Cell Sci 118, 843–846.PubMedCrossRefGoogle Scholar
  3. 3.
    Rossman, K.L., Der, C.J., and Sondek, J. (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6, 167–180.PubMedCrossRefGoogle Scholar
  4. 4.
    Lamarche, N., and Hall, A. (1994) GAPs for rho-related GTPases. Trends Genet 10, 436–440.PubMedCrossRefGoogle Scholar
  5. 5.
    Etienne-Manneville, S., and Hall, A. (2002) Rho GTPases in cell biology. Nature 420, 629–635.PubMedCrossRefGoogle Scholar
  6. 6.
    Reid, T.S., Terry, K.L., Casey, P.J., and Beese, L.S. (2004) Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol 343, 417–433.PubMedCrossRefGoogle Scholar
  7. 7.
    Ashby, M.N. (1998) CaaX converting enzymes. Curr Opin Lipidol 9, 99–102.PubMedCrossRefGoogle Scholar
  8. 8.
    Boyartchuk, V.L., Ashby, M.N., and Rine, J. (1997) Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275, 1796–1800.PubMedCrossRefGoogle Scholar
  9. 9.
    Hrycyna, C.A., Sapperstein, S.K., Clarke, S., and Michaelis, S. (1991) The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. EMBO J 10, 1699–1709.PubMedGoogle Scholar
  10. 10.
    Sebti, S.M., and Der, C.J. (2003) Opinion: Searching for the elusive targets of farnesyltransferase inhibitors. Nat Rev Cancer 3, 945–951.PubMedCrossRefGoogle Scholar
  11. 11.
    Winter-Vann, A.M., and Casey, P.J. (2005) Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer 5, 405–412.PubMedCrossRefGoogle Scholar
  12. 12.
    Michaelson, D., Silletti, J., Murphy, G., Eustachio, P., Rush, and M., Philips, M.R. (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152, 111–126.Google Scholar
  13. 13.
    Chenette, E.J., Abo, A., and Der, C.J. (2005) Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J Biol Chem 280, 13784–13792.PubMedCrossRefGoogle Scholar
  14. 14.
    Berzat, A.C., Buss, J.E., Chenette, E.J., Weinbaum, C.A., Shutes, A., Der, C.J., Minden, A., Cox, A.D. (2005) Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J Biol Chem 280, 33055–33065.PubMedCrossRefGoogle Scholar
  15. 15.
    Roberts, P.J., Mitin, N., Keller, P.J., Chenette, E.J., Madigan, J.P., Currin, R.O., Cox, A.D., Wilson, O., Kirschmeier, P., and Der, C.J. (2008) Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283, 25150–25163.PubMedCrossRefGoogle Scholar
  16. 16.
    Bergo, M.O., Leung, G.K., Ambroziak, P., Otto, J.C., Casey, P.J., Gomes, A.Q., Seabra, M.C., and Young, S.G. (2001) Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J Biol Chem 276, 5841–5845.PubMedCrossRefGoogle Scholar
  17. 17.
    Sun, J., Blaskovich, M.A., Knowles, D., Qian, Y., Ohkanda, J., Bailey, R.D., Hamilton, A.D., and Sebti, S.M. (1999) Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. Cancer Res 59, 4919–4926.PubMedGoogle Scholar
  18. 18.
    McGuire, T.F., Qian, Y., Vogt, A., Hamilton, A.D., and Sebti, S.M. (1996) Platelet-derived growth factor receptor tyrosine phosphorylation requires protein geranylgeranylation but not farnesylation. J Biol Chem 271, 27402–27407.PubMedCrossRefGoogle Scholar
  19. 19.
    Falsetti, S.C., Wang, D.A., Peng, H., Carrico, D., Cox, A.D., Der, C.J., Hamilton, A.D., and Sebti,.S.M. (2007) Geranylgeranyltransferase I inhibitors target RalB to inhibit anchorage-dependent growth and induce apoptosis and RalA to inhibit anchorage-independent growth. Mol Cell Biol 27, 8003–8014.PubMedCrossRefGoogle Scholar
  20. 20.
    Bivona, T.G., Wiener, H.H., Ahearn, I.M., Silletti, J., Chiu, V.K., and Philips, M.R. (2004) Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J Cell Biol 164, 461–470.PubMedCrossRefGoogle Scholar
  21. 21.
    Drisdel, R.C., and Green, W.N. (2004) Labeling and quantifying sites of protein palmitoylation. Biotechniques 36, 276–285.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Natalia Mitin
    • 1
  • Patrick J. Roberts
    • 1
  • Emily J. Chenette
    • 1
  • Channing J. Der
    • 2
  1. 1.Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillUSA
  2. 2.Lineberger Comprehensive Cancer Center and Department of PharmacologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations