Skip to main content

Analysis of Rho GTPase Activation in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Rho GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 827))

Abstract

Rho proteins act as molecular switches to control multiple cellular processes. The switch mechanism involves cycling between active and inactive states based on GTP loading and hydrolysis. Assays that quantitatively analyze the GTP loading of Rho proteins have become important molecular tools to decipher upstream signals and mechanisms that regulate activation and de-activation. These assays make use of Rho activation probes constructed from Rho-binding domains of downstream effectors. The utility of these assays comes from effector domains that show selective high affinity interactions with specific subsets of GTP-bound activated GTPases. Here, we describe assays used to analyze yeast Rho GTPase activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, W., Tamanoi, F., and Novick, P. (2001) Spatial regulation of the exocyst complex by Rho1 GTPase. Nat Cell Biol 3, 353–360.

    Article  PubMed  CAS  Google Scholar 

  2. Dong, Y., Pruyne, D., and Bretscher, A. (2003) Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J Cell Biol 161, 1081–1092.

    Article  PubMed  CAS  Google Scholar 

  3. Imamura, H., Tanaka, K., Hihara, T., Umikawa, M., Kamei, T., Takahashi, K., Sasaki, T., and Takai, Y. (1997) Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J 16, 2745–2755.

    Article  PubMed  CAS  Google Scholar 

  4. Delley, P.A., and Hall, M.N. (1999) Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J Cell Biol 147, 163–174.

    Article  PubMed  CAS  Google Scholar 

  5. Lechler, T., Jonsdottir, G.A., Klee, S.K., Pellman, D., and Li, R. (2001) A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J Cell Biol 155, 261–270.

    Article  PubMed  CAS  Google Scholar 

  6. Kadota, J., Yamamoto, T., Yoshiuchi, S., Bi, E., and Tanaka, K. (2004) Septin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell 15, 5329–5345.

    Article  PubMed  CAS  Google Scholar 

  7. Wu, H., Rossi, G., and Brennwald, P. (2008) The ghost in the machine: small GTPases as spatial regulators of exocytosis. Trends Cell Biol 18, 397–404.

    Article  PubMed  CAS  Google Scholar 

  8. Perez, P., and Rincón, S.A. (2010) Rho GTPases: regulation of cell polarity and growth in yeasts. Biochem J 426, 243–253.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson, D.I. (1999) Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63, 54–105.

    PubMed  CAS  Google Scholar 

  10. Levin, D.E. (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69, 262–291.

    Article  PubMed  CAS  Google Scholar 

  11. Ren, X.D., and Schwartz, M.A. (2000) Determination of GTP loading on Rho. Methods Enzymol 325, 264–272.

    Article  PubMed  CAS  Google Scholar 

  12. Logan, M.R., Jones, L., and Eitzen, G. (2010) Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion. Biochem Biophys Res Commun 394, 64–69.

    Article  PubMed  CAS  Google Scholar 

  13. Benard, V., and Bokoch, G.M. (2002) Assay of Cdc42, Rac, and Rho GTPase activation by affinity methods. Methods Enzymol 345, 349–359.

    Article  PubMed  Google Scholar 

  14. Jones, L., Tedrick, K., Baier, A., Logan, M.R., and Eitzen, G. (2010) Cdc42p is activated during vacuole membrane fusion in a sterol-dependent subreaction of priming. J Biol Chem 285, 4298–4306.

    Article  PubMed  CAS  Google Scholar 

  15. Kono, K., Nogami, S., Abe, M., Nishizawa, M., Morishita, S., Pellman, D., and Ohya, Y. (2008) G1/S cyclin-dependent kinase regulates small GTPase Rho1p through phosphorylation of RhoGEF Tus1p in Saccharomyces cerevisiae. Mol Biol Cell 19, 1763–1771.

    Article  PubMed  CAS  Google Scholar 

  16. Wai, S.C., Gerber, S.A., and Li, R. (2009) Multisite phosphorylation of the guanine nucleotide exchange factor Cdc24 during yeast cell polarization. PLoS One 4, e6563.

    Article  PubMed  Google Scholar 

  17. Boulter, E., Garcia-Mata, R., Guilluy, C., Dubash, A., Rossi, G., Brennwald, P.J., and Burridge, K. (2010) Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12, 477–483.

    Article  PubMed  CAS  Google Scholar 

  18. Qadota, H., Python, C.P., Inoue, S.B., Arisawa, M., Anraku, Y., Zheng, Y., Watanabe, T., Levin, D.E., and Ohya, Y. (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-β-glucan synthase. Science 272, 279–281.

    Article  PubMed  CAS  Google Scholar 

  19. Marelli, M., Smith, J.J., Jung, S., Yi, E., Nesvizhskii, A.I., Christmas, R.H., Saleem, R.A., Tam, Y.Y., Fagarasanu, A., Goodlett, D.R., Aebersold, R., Rachubinski, R.A., and Aitchison, J.D. (2004) Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J Cell Biol 167, 1099–1112.

    Article  PubMed  CAS  Google Scholar 

  20. Chang, J., Ruiz, V., and Vancura, A. (2008) Purification of yeast membranes and organelles by sucrose density gradient centrifugation. Methods Mol Biol 457, 141–149.

    PubMed  CAS  Google Scholar 

  21. Eitzen, G., Thorngren, N., and Wickner, W. (2001) Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking. EMBO J 20, 5650–5656.

    Article  PubMed  CAS  Google Scholar 

  22. Wu, H., and Brennwald, P. (2010) The function of two Rho family GTPases is determined by distinct patterns of cell surface localization. Mol Cell Biol 30, 5207–5217.

    Article  PubMed  CAS  Google Scholar 

  23. Paglini, G., Peris, L., Diez-Guerra, J., Quiroga, S., and Cáceres, A. (2001) The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep 2, 1139–1144.

    Article  PubMed  CAS  Google Scholar 

  24. Abe, M., Qadota, H., Hirata, A., and Ohya, Y. (2003) Lack of GTP-bound Rho1p in secretory vesicles of Saccharomyces cerevisiae. J Cell Biol 162, 85–97.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Canadian Institutes of Health Research and the National Science and Engineering Research Council of Canada for funding projects that study Rho GTPases in yeast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Eitzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eitzen, G., Logan, M.R. (2012). Analysis of Rho GTPase Activation in Saccharomyces cerevisiae . In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 827. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-442-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-442-1_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-441-4

  • Online ISBN: 978-1-61779-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics