Advertisement

Rho GTPases pp 195-212 | Cite as

Assessment of the Role for Rho Family GTPases in NADPH Oxidase Activation

  • Kei Miyano
  • Hideki Sumimoto
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 827)

Abstract

Rac, a member of the Rho family small GTPases, plays a crucial role in activation of Nox family NADPH oxidases in animals, enzymes dedicated to production of reactive oxygen species such as superoxide. The phagocyte oxidase Nox2, crucial for microbicidal activity during phagocytosis, is activated in a manner completely dependent on Rac. Rac in the GTP-bound form directly binds to the oxidase activator p67 phox , which in turn interacts with Nox2, leading to superoxide production. Rac also participates in activation of the nonphagocytic oxidase Nox1; in this case, GTP-bound Rac functions by interacting with Noxa1, a p67 phox -related protein that is required for Nox1 activation. On the other hand, in the presence of either p67 phox or Noxa1, Rac facilitates superoxide production by Nox3, which is responsible in the inner ear for formation of otoconia, tiny mineralized structures that are required for sensing balance and gravity. All the three mammalian homologs of Rac (Rac1, Rac2, and Rac3), but not Cdc42 or RhoA, are capable of serving as an activator of Nox1–3. Here, we describe methods for the assay of Rac binding to p67 phox and Noxa1 and for the reconstitution of Rac-dependent Nox activity in cell-free and whole-cell systems.

Key words

NADPH oxidase Nox1 Nox2 Nox3 Superoxide Rac p67phox Noxa1 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research and Targeted Proteins Research Program (TPRP) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and by Japan Foundation for Applied Enzymology.

References

  1. 1.
    Sumimoto, H. (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275, 3249–3277.PubMedCrossRefGoogle Scholar
  2. 2.
    Abo, A., Pick, E., Hall, A., Totty, N., Teahan, C. G., and Segal, A. W. (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353, 668–670.PubMedCrossRefGoogle Scholar
  3. 3.
    Knaus, U. G., Heyworth, P. G., Evans, T., Curnutte, J. T., and Bokoch, G. M. (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254, 1512–1515.PubMedCrossRefGoogle Scholar
  4. 4.
    Mizuno, T., Kaibuchi, K., Ando, S., Musha, T., Hiraoka, K., Takaishi, K., Asada, M., Nunoi, H., Matsuda, I., and Takai, Y. (1992) Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 267, 10215–10218.PubMedGoogle Scholar
  5. 5.
    Molshanski-Mor, S., Mizrahi, A., Ugolev, Y., Dahan, I., Berdichevsky, Y., and Pick, E. (2007) Cell-free assays: the reductionist approach to the study of NADPH oxidase assembly, or “all you wanted to know about cell-free assays but did not dare to ask”. Methods Mol Biol 412, 385–428.PubMedCrossRefGoogle Scholar
  6. 6.
    Ambruso, D. R., Knall, C., Abell, A. N., Panepinto, J., Kurkchubasche, A., Thurman, G., Gonzalez-Aller, C., Hiester, A., deBoer, M., Harbeck, R. J., Oyer, R., Johnson, G. L., and Roos, D. (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 97, 4654–4659.PubMedCrossRefGoogle Scholar
  7. 7.
    Williams, D. A., Tao, W., Yang, F., Kim, C., Gu, Y., Mansfield, P., Levine, J. E., Petryniak, B., Derrow, C. W., Harris, C., Jia, B., Zheng, Y., Ambruso, D. R., Lowe, J. B., Atkinson, S. J., Dinauer, M. C., and Boxer, L. (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96, 1646–1454.PubMedGoogle Scholar
  8. 8.
    Gu, Y., Filippi, M. D., Cancelas, J. A., Siefring, J. E., Williams, E. P., Jasti, A. C., Harris, C. E., Lee, A. W., Prabhakar, R., Atkinson, S. J., Kwiatkowski, D. J., and Williams, D. A. (2003) Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302, 445–449.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamauchi, A., Marchal, C. C., Molitoris, J., Pech, N., Knaus, U., Towe, J., Atkinson, S. J., and Dinauer, M. C. (2005) Rac GTPase isoform-specific regulation of NADPH oxidase and chemotaxis in murine neutrophils in vivo. Role of the C-terminal polybasic domain. J Biol Chem 280, 953–964.Google Scholar
  10. 10.
    Shiose, A., and Sumimoto, H. (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 275, 13793–13801.PubMedCrossRefGoogle Scholar
  11. 11.
    Akasaki, T., Koga, H., and Sumimoto, H. (1999) Phosphoinositide 3-kinase-dependent and -independent activation of the small GTPase Rac2 in human neutrophils. J Biol Chem 274, 18055–18059.PubMedCrossRefGoogle Scholar
  12. 12.
    Koga, H., Terasawa, H., Nunoi, H., Takeshige, K., Inagaki, F., and Sumimoto, H. (1999) Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274, 25051–25060.PubMedCrossRefGoogle Scholar
  13. 13.
    Lapouge, K., Smith, S. J., Walker, P. A., Gamblin, S. J., Smerdon, S. J., and Rittinger, K. (2000) Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 6, 899–907.PubMedGoogle Scholar
  14. 14.
    Takeya, R., Ueno, N., Kami, K., Taura, M., Kohjima, M., Izaki, T., Nunoi, H., and Sumimoto, H. (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278, 25234–25246.PubMedCrossRefGoogle Scholar
  15. 15.
    Ueyama, T., Geiszt, M., and Leto, T. L. (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26, 2160–2174.PubMedCrossRefGoogle Scholar
  16. 16.
    Cheng, G., Diebold, B. A., Hughes, Y., and Lambeth, J. D. (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281, 17718–17726.PubMedCrossRefGoogle Scholar
  17. 17.
    Miyano, K., Ueno, N., Takeya, R., and Sumimoto, H. (2006) Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281, 21857–21868.PubMedCrossRefGoogle Scholar
  18. 18.
    Ueno, N., Takeya, R., Miyano, K., Kikuchi, H., and Sumimoto, H. (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 280, 23328–23339.PubMedCrossRefGoogle Scholar
  19. 19.
    Miyano, K., and Sumimoto, H. (2007) Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Biochimie 89, 1133–1144.PubMedCrossRefGoogle Scholar
  20. 20.
    Miyano, K., Koga, H., Minakami, R., and Sumimoto, H. (2009) The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases. Biochem J 422, 373–382.PubMedCrossRefGoogle Scholar
  21. 21.
    Heyworth, P. G., Knaus, U. G., Settleman, J., Curnutte, J. T., and Bokoch, G. M. (1993) Regulation of NADPH oxidase activity by Rac GTPase activating protein(s). Mol Biol Cell 4, 1217–1223.PubMedGoogle Scholar
  22. 22.
    Kwong, C. H., Adams, A. G., and Leto, T. L. (1995) Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem 270, 19868–19872.PubMedCrossRefGoogle Scholar
  23. 23.
    Diekmann, D., Abo, A., Johnston, C., Segal, A. W., and Hall, A. (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265, 531–533.PubMedCrossRefGoogle Scholar
  24. 24.
    Nisimoto, Y., Freeman, J. L., Motalebi, S. A., Hirshberg, M., and Lambeth, J. D. (1997) Rac binding to p67phox. Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. J Biol Chem 272, 18834–18841.PubMedCrossRefGoogle Scholar
  25. 25.
    Sarfstein, R., Gorzalczany, Y., Mizrahi, A., Berdichevsky, Y., Molshanski-Mor, S., Weinbaum, C., Hirshberg, M., Dagher, M. C., and Pick, E. (2004) Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 279, 16007–16016.PubMedCrossRefGoogle Scholar
  26. 26.
    Mizrahi, A., Berdichevsky, Y., Casey, P. J., and Pick, E. (2010) A prenylated p47phox-p67phox-Rac1 chimera is a quintessential NADPH oxidase activator: membrane association and functional capacity. J Biol Chem 285, 25485–25499.PubMedCrossRefGoogle Scholar
  27. 27.
    Maehara, Y., Miyano, K., Yuzawa, S., Akimoto, R., Takeya, R., and Sumimoto, H. (2010) A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase. J Biol Chem 285, 31435–31445.PubMedCrossRefGoogle Scholar
  28. 28.
    Mizushima, S., and Nagata, S. (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18, 5322.PubMedCrossRefGoogle Scholar
  29. 29.
    Takeya, R., Ueno, N., and Sumimoto, H. (2006) Regulation of superoxide-producing NADPH oxidases in nonphagocytic cells. Methods Enzymol 406, 456–468.PubMedCrossRefGoogle Scholar
  30. 30.
    Pick, E., Bromberg, Y., Shpungin, S., and Gadba, R. (1987) Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component. J Biol Chem 262, 16476–16483.Google Scholar
  31. 31.
    Ueyama, T., Eto, M., Kami, K., Tatsuno, T., Kobayashi, T., Shirai, Y., Lennartz, M. R., Takeya, R., Sumimoto, H., and Saito, N. (2005) Isoform-specific membrane targeting mechanism of Rac during FcγR-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol 175, 2381–2390.PubMedGoogle Scholar
  32. 32.
    Ando, S., Kaibuchi, K., Sasaki, T., Hiraoka, K., Nishiyama, T., Mizuno, T., Asada, M., Nunoi, H., Matsuda, I., Matsuura, Y., Polakis, P., McCormick, F., and Takai, Y. (1992) Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. J Biol Chem 267, 25709–25713.PubMedGoogle Scholar
  33. 33.
    Hata, K., Takeshige, K., and Sumimoto, H. (1997) Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro. Biochem Biophys Res Commun 241, 226–231.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan

Personalised recommendations