Historical Overview of Rho GTPases

  • Anne J. RidleyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 827)


In 1985, the first members of the Rho GTPase family were identified. Over the next 10 years, rapid progress was made in understanding Rho GTPase signalling. Multiple Rho GTPases were discovered in a wide range of eukaryotes, and shown to regulate a diverse range of cellular processes, including cytoskeletal dynamics, NADPH oxidase activation, cell migration, cell polarity, membrane trafficking, and transcription. The Rho regulators, guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs), were found through a combination of biochemistry, genetics, and detective work. Downstream targets for Rho GTPases were also rapidly identified, and linked to Rho-regulated cellular responses. In parallel, a wide range of bacterial proteins were found to modify Rho proteins or alter their activity in cells, many of which turned out to be useful tools to study Rho functions. More recent work has delineated where Rho GTPases act in cells, the molecular pathways linking some of them to specific cellular responses, and their functions in the development of multicellular organisms.

Key words

Cytoskeleton Signal transduction Adhesion Transcription GEF GAP GDI Trafficking 


  1. 1.
    Aspenstrom, P., Ruusala, A., and Pacholsky, D. (2007) Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 313, 3673–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Riou, P., Villalonga, P., and Ridley, A. J. (2010) Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression. Bioessays 32, 986–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Madaule, P., and Axel, R. (1985) A novel ras-related gene family. Cell 41, 31–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Madaule, P., Axel, R., and Myers, A. M. (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84, 779–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson, D. I., and Pringle, J. R. (1990) Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol 111, 143–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Yang, Z., and Watson, J. C. (1993) Molecular cloning and characterization of rho, a ras-related small GTP-binding protein from the garden pea. Proc Natl Acad Sci USA 90, 8732–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakano, K., and Mabuchi, I. (1995) Isolation and sequencing of two cDNA clones encoding Rho proteins from the fission yeast Schizosaccharomyces pombe. Gene 155, 119–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Bush, J., Franek, K., and Cardelli, J. (1993) Cloning and characterization of seven novel Dictyostelium discoideum rac-related genes belonging to the rho family of GTPases. Gene 136, 61–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Rivero, F., Dislich, H., Glockner, G., and Noegel, A. A. (2001) The Dictyostelium discoideum family of Rho-related proteins. Nucleic Acids Res 29, 1068–79.PubMedCrossRefGoogle Scholar
  10. 10.
    Fransson, A., Ruusala, A., and Aspenstrom, P. (2003) Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 278, 6495–502.PubMedCrossRefGoogle Scholar
  11. 11.
    Boureux, A., Vignal, E., Faure, S., and Fort, P. (2007) Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24, 203–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Wherlock, M., and Mellor, H. (2002) The Rho GTPase family: a Racs to Wrchs story. J Cell Sci 115, 239–40.PubMedGoogle Scholar
  13. 13.
    Espinosa, E. J., Calero, M., Sridevi, K., and Pfeffer, S. R. (2009) RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 137, 938–48.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, N., Liang, J., Tian, Y., Yuan, L., Wu, L., Miao, S., Zong, S., and Wang, L. (2010) A novel testis-specific GTPase serves as a link to proteasome biogenesis: functional characterization of RhoS/RSA-14-44 in spermatogenesis. Mol Biol Cell 21, 4312–4324.PubMedCrossRefGoogle Scholar
  15. 15.
    Valster, A. H., Hepler, P. K., and Chernoff, J. (2000) Plant GTPases: the Rhos in bloom. Trends Cell Biol 10, 141–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Chardin, P., Boquet, P., Madaule, P., Popoff, M. R., Rubin, E. J., and Gill, D. M. (1989) The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8, 1087–92.PubMedGoogle Scholar
  17. 17.
    Aktories, K., and Barbieri, J. T. (2005) Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3, 397–410.PubMedCrossRefGoogle Scholar
  18. 18.
    Paterson, H. F., Self, A. J., Garrett, M. D., Just, I., Aktories, K., and Hall, A. (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111, 1001–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Bos, J. L. (1989) ras oncogenes in human cancer: a review. Cancer Res 49, 4682–9.PubMedGoogle Scholar
  20. 20.
    Feig, L. A., and Cooper, G. M. (1988) Inhibition of NIH 3 T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol Cell Biol 8, 3235–43.PubMedGoogle Scholar
  21. 21.
    Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A. (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–10.PubMedCrossRefGoogle Scholar
  22. 22.
    Ridley, A. J., and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–99.PubMedCrossRefGoogle Scholar
  23. 23.
    Kozma, R., Ahmed, S., Best, A., and Lim, L. (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3 T3 fibroblasts. Mol Cell Biol 15, 1942–52.PubMedGoogle Scholar
  24. 24.
    Nobes, C. D., and Hall, A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Aspenstrom, P., Fransson, A., and Saras, J. (2004) Rho GTPases have diverse effects on the organisation of the actin filament system. Biochem J 377, 327–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003) Cell migration: integrating signals from front to back. Science 302, 1704–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., and Hahn, K. M. (2000) Localized Rac activation dynamics visualized in living cells. Science 290, 333–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Pertz, O., Hodgson, L., Klemke, R. L., and Hahn, K. M. (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Kurokawa, K., and Matsuda, M. (2005) Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell 16, 4294–303.PubMedCrossRefGoogle Scholar
  30. 30.
    Heasman, S. J., and Ridley, A. J. (2010) Multiples roles of RhoA during T cell transendothelial migration. Small GTPases 1, 174–9.Google Scholar
  31. 31.
    Ueda, T., Kikuchi, A., Ohga, N., Yamamoto, J., and Takai, Y. (1990) Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J Biol Chem 265, 9373–80.PubMedGoogle Scholar
  32. 32.
    Isomura, M., Kikuchi, A., Ohga, N., and Takai, Y. (1991) Regulation of binding of rhoB p20 to membranes by its specific regulatory protein, GDP dissociation inhibitor. Oncogene 6, 119–24.PubMedGoogle Scholar
  33. 33.
    DerMardirossian, C., and Bokoch, G. M. (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15, 356–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Hart, M. J., Eva, A., Evans, T., Aaronson, S. A., and Cerione, R. A. (1991) Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354, 311–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Brugnera, E., Haney, L., Grimsley, C., Lu, M., Walk, S. F., Tosello-Trampont, A. C., Macara, I. G., Madhani, H., Fink, G. R., and Ravichandran, K. S. (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4, 574–82.PubMedGoogle Scholar
  36. 36.
    Cote, J. F., and Vuori, K. (2007) GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol 17, 383–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Garrett, M. D., Self, A. J., van Oers, C., and Hall, A. (1989) Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins. J Biol Chem 264, 10–3.PubMedGoogle Scholar
  38. 38.
    Diekmann, D., Brill, S., Garrett, M. D., Totty, N., Hsuan, J., Monfries, C., Hall, C., Lim, L., and Hall, A. (1991) Bcr encodes a GTPase-activating protein for p21rac. Nature 351, 400–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Tcherkezian, J., and Lamarche-Vane, N. (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99, 67–86.PubMedCrossRefGoogle Scholar
  40. 40.
    Rossman, K. L., Der, C. J., and Sondek, J. (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6, 167–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Rittinger, K., Walker, P. A., Eccleston, J. F., Nurmahomed, K., Owen, D., Laue, E., Gamblin, S. J., and Smerdon, S. J. (1997) Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Worthylake, D. K., Rossman, K. L., and Sondek, J. (2000) Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408, 682–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Scheffzek, K., Stephan, I., Jensen, O. N., Illenberger, D., and Gierschik, P. (2000) The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nat Struct Biol 7, 122–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., Tan, I., Leung, T., and Lim, L. (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1, 183–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Hussain, N. K., Jenna, S., Glogauer, M., Quinn, C. C., Wasiak, S., Guipponi, M., Antonarakis, S. E., Kay, B. K., Stossel, T. P., Lamarche-Vane, N., and McPherson, P. S. (2001) Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol 3, 927–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Manser, E., Leung, T., Salihuddin, H., Tan, L., and Lim, L. (1993) A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 363, 364–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., and Lim, L. (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Aelst, L., and D’Souza-Schorey, C. (1997) Rho GTPases and signaling networks. Genes Dev 11, 2295–322.PubMedCrossRefGoogle Scholar
  49. 49.
    Jaffe, A. B., and Hall, A. (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21, 247–69.PubMedCrossRefGoogle Scholar
  50. 50.
    Joberty, G., Petersen, C., Gao, L., and Macara, I. G. (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2, 531–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Etienne-Manneville, S., and Hall, A. (2003) Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 15, 67–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Riento, K., Totty, N., Villalonga, P., Garg, R., Guasch, R., and Ridley, A. J. (2005) RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J 24, 1170–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Castillo-Lluva, S., Tatham, M. H., Jones, R. C., Jaffray, E. G., Edmondson, R. D., Hay, R. T., and Malliri, A. (2010) SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol 12, 1078–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Tao, W., Pennica, D., Xu, L., Kalejta, R. F., and Levine, A. J. (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15, 1796–807.PubMedCrossRefGoogle Scholar
  55. 55.
    Ridley, A. J. (1996) Rho: theme and variations. Curr Biol 6, 1256–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Miralles, F., Posern, G., Zaromytidou, A. I., and Treisman, R. (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Benitah, S. A., Valeron, P. F., van Aelst, L., Marshall, C. J., and Lacal, J. C. (2004) Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 1705, 121–32.PubMedGoogle Scholar
  58. 58.
    Bokoch, G. M. (2003) Biology of the p21-­activated kinases. Annu Rev Biochem 72, 743–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu, W. S. (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25, 695–705.PubMedCrossRefGoogle Scholar
  60. 60.
    Kheradmand, F., Werner, E., Tremble, P., Symons, M., and Werb, Z. (1998) Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280, 898–902.PubMedCrossRefGoogle Scholar
  61. 61.
    Medjkane, S., Perez-Sanchez, C., Gaggioli, C., Sahai, E., and Treisman, R. (2009) Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 11, 257–68.PubMedCrossRefGoogle Scholar
  62. 62.
    Braga, V. M. (2002) Cell-cell adhesion and signalling. Curr Opin Cell Biol 14, 546–56.PubMedCrossRefGoogle Scholar
  63. 63.
    Ito, H., Iwamoto, I., Morishita, R., Nozawa, Y., Narumiya, S., Asano, T., and Nagata, K. (2005) Possible role of Rho/Rhotekin signaling in mammalian septin organisation. Oncogene 24, 7064–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Hall, A. (2009) The cytoskeleton and cancer. Cancer Metastasis Rev 28, 5–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Ridley, A. J. (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16, 522–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Harris, K. P., and Tepass, U. (2010) Cdc42 and vesicle trafficking in polarized cells. Traffic 11, 1272–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Visvikis, O., Maddugoda, M. P., and Lemichez, E. (2010) Direct modifications of Rho proteins: deconstructing GTPase regulation. Biol Cell 102, 377–89.PubMedCrossRefGoogle Scholar
  68. 68.
    Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R., and Galan, J. E. (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–26.PubMedCrossRefGoogle Scholar
  69. 69.
    Finlay, B. B. (2005) Bacterial virulence strategies that utilize Rho GTPases. Curr Top Microbiol Immunol 291, 1–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Luo, L., Liao, Y. J., Jan, L. Y., and Jan, Y. N. (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8, 1787–802.PubMedCrossRefGoogle Scholar
  71. 71.
    Eaton, S., Auvinen, P., Luo, L., Jan, Y. N., and Simons, K. (1995) CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium. J Cell Biol 131, 151–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Strutt, D. I., Weber, U., and Mlodzik, M. (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Reddien, P. W., and Horvitz, H. R. (2000) CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2, 131–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Heasman, S. J., and Ridley, A. J. (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9, 690–701.PubMedCrossRefGoogle Scholar
  75. 75.
    Roberts, A. W., Kim, C., Zhen, L., Lowe, J. B., Kapur, R., Petryniak, B., Spaetti, A., Pollock, J. D., Borneo, J. B., Bradford, G. B., Atkinson, S. J., Dinauer, M. C., and Williams, D. A. (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–96.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen, F., Ma, L., Parrini, M. C., Mao, X., Lopez, M., Wu, C., Marks, P. W., Davidson, L., Kwiatkowski, D. J., Kirchhausen, T., Orkin, S. H., Rosen, F. S., Mayer, B. J., Kirschner, M. W., and Alt, F. W. (2000) Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr Biol 10, 758–65.PubMedCrossRefGoogle Scholar
  77. 77.
    Sugihara, K., Nakatsuji, N., Nakamura, K., Nakao, K., Hashimoto, R., Otani, H., Sakagami, H., Kondo, H., Nozawa, S., Aiba, A., and Katsuki, M. (1998) Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17, 3427–33.PubMedCrossRefGoogle Scholar
  78. 78.
    Jackson, B., Peyrollier, K., Pedersen, E., Basse, A., Karlsson, R., Wang, Z., Lefever, T., Ochsenbein, A. M., Schmidt, G., Aktories, K., Stanley, A., Quondamatteo, F., Ladwein, M., Rottner, K., van Hengel, J., and Brakebusch, C. (2011) RhoA is dispensable for skin development, but crucial for contraction and directed migration of keratinocytes. Mol Biol Cell 22, 593–605.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK

Personalised recommendations