Control of the Interferon Response in RNAi Experiments

  • Jana Nejepinska
  • Matyas Flemr
  • Petr SvobodaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 820)


The RNA interference (RNAi) and interferons have been an uneasy marriage. Ever since the discovery of RNAi in mammals, the interferon response has been a feared problem. While RNAi became an efficient and widespread method for gene silencing in mammals, numerous studies recognized several obstacles, including undesirable activation of the interferon response, which need to be overcome to achieve a specific and robust RNAi effect. The aim of this text is to provide theoretical and practical information for scientists who want to control interferon response and other adverse effects in their RNAi experiments.

Key words

RNA interference Small interfering RNA Short hairpin RNA Double-stranded RNA Interferon 



We thank Witold Filipowicz group at the FMI for sharing their experience and protocols and Daniela Schmitter, Radek Malik, and Lenka Sarnova for help with preparation of the manuscript. Protocols are based on research supported by the GAAV grant IAA 501110701, EMBO SDIG grant 2006–1483, GACR grant 204/09/0085, and the Purkynje Fellowship.


  1. 1.
    Sontheimer, E. J., Carthew, R. W. (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122: 9–12.Google Scholar
  2. 2.
    Zamore, P. D., Haley, B. (2005) Ribo-gnome: the big world of small RNAs. Science 309: 1519–1524.Google Scholar
  3. 3.
    Filipowicz, W. (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122: 17–20.Google Scholar
  4. 4.
    Tolia, N. H., Joshua-Tor, L. (2007) Slicer and the argonautes. Nat. Chem. Biol. 3: 36–43.Google Scholar
  5. 5.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.Google Scholar
  6. 6.
    Manche, L., Green, S. R., Schmedt, C., Mathews, M. B. (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12: 5238–5248.Google Scholar
  7. 7.
    Svoboda, P. (2008) RNA silencing in mammalian oocytes and early embryos. Curr. Top. Microbiol. Immunol. 320: 225–256.Google Scholar
  8. 8.
    Mineno, J., Okamoto, S., Ando, T., Sato, M., Chono, H., Izu, H., Takayama, M., Asada, K., Mirochnitchenko, O., Inouye, M., Kato, I. (2006) The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 34: 1765–1771.Google Scholar
  9. 9.
    Cummins, J. M., He, Y., Leary, R. J., Pagliarini, R., Diaz, L. A., Jr., Sjoblom, T., Barad, O., Bentwich, Z., Szafranska, A. E., Labourier, E., Raymond, C. K., Roberts, B. S., Juhl, H., Kinzler, K. W., Vogelstein, B., Velculescu, V. E. (2006) The colorectal microRNAome. Proc. Natl. Acad. Sci. USA 103: 3687–3692.Google Scholar
  10. 10.
    Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., Hammond, S. M., Joshua-Tor, L., Hannon, G. J. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437–1441.Google Scholar
  11. 11.
    Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., Tuschl, T. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cells 15: 185–197.Google Scholar
  12. 12.
    Pillai, R. S., Artus, C. G., Filipowicz, W. (2004) Tethering of human AGO proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA - Publ. RNA Soc. 10: 1518–1525.Google Scholar
  13. 13.
    Song, J. J., Smith, S. K., Hannon, G. J., Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305: 1434–1437.Google Scholar
  14. 14.
    Doench, J. G., Petersen, C. P., Sharp, P. A. (2003) siRNAs can function as miRNAs. Genes Dev. 17: 438–442.Google Scholar
  15. 15.
    Hutvagner, G., Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297: 2056–2060.Google Scholar
  16. 16.
    Yekta, S., Shih, I. H., Bartel, D. P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304: 594–596.Google Scholar
  17. 17.
    Brummelkamp, T. R., Bernards, R., Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.Google Scholar
  18. 18.
    McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J., Sharp, P. A. (2002) Gene silencing using micro-RNA designed hairpins. RNA - Publ. RNA Soc. 8: 842–850.Google Scholar
  19. 19.
    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16: 948–958.Google Scholar
  20. 20.
    van de Wetering, M., Oving, I., Muncan, V., Pon Fong, M. T., Brantjes, H., van Leenen, D., Holstege, F. C., Brummelkamp, T. R., Agami, R., Clevers, H. (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4: 609–615.Google Scholar
  21. 21.
    Chung, K. H., Hart, C. C., Al-Bassam, S., Avery, A., Taylor, J., Patel, P. D., Vojtek, A. B., Turner, D. L. (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 34: e53.Google Scholar
  22. 22.
    Zeng, Y., Wagner, E. J., Cullen, B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cells 9: 1327–1333.Google Scholar
  23. 23.
    de Veer, M. J., Sledz, C. A., Williams, B. R. (2005) Detection of foreign RNA: implications for RNAi. Immunol. Cell Biol. 83: 224–228.Google Scholar
  24. 24.
    Geiss, G., Jin, G., Guo, J., Bumgarner, R., Katze, M. G., Sen, G. C. (2001) A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J. Biol. Chem. 276: 30178–30182.Google Scholar
  25. 25.
    Schlee, M., Hornung, V., Hartmann, G. (2006) siRNA and isRNA: two edges of one sword. Mol. Ther. 14: 463–470.Google Scholar
  26. 26.
    Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H., Williams, B. R. (2003) Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5: 834–839.Google Scholar
  27. 27.
    Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L., Iggo, R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genet. 34: 263–264.Google Scholar
  28. 28.
    Svoboda, P. (2007) Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr. Opin. Mol. Ther. 9: 248–257.Google Scholar
  29. 29.
    Marques, J. T., Devosse, T., Wang, D., Zamanian-Daryoush, M., Serbinowski, P., Hartmann, R., Fujita, T., Behlke, M. A., Williams, B. R. (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat. Biotechnol. 24: 559–565.Google Scholar
  30. 30.
    Kim, D. H., Longo, M., Han, Y., Lundberg, P., Cantin, E., Rossi, J. J. (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol. 22: 321–325.Google Scholar
  31. 31.
    Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., Endres, S., Hartmann, G. (2006) 5’-Triphosphate RNA is the ligand for RIG-I. Science 314: 994–997.Google Scholar
  32. 32.
    Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F., Reis e Sousa, C. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314: 997–1001.Google Scholar
  33. 33.
    Pebernard, S., Iggo, R. D. (2004) Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72: 103–111.Google Scholar
  34. 34.
    Judge, A. D., Sood, V., Shaw, J. R., Fang, D., McClintock, K., MacLachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23: 457–462.Google Scholar
  35. 35.
    Hornung, V., Guenthner-Biller, M., Bourquin, C., Ablasser, A., Schlee, M., Uematsu, S., Noronha, A., Manoharan, M., Akira, S., de Fougerolles, A., Endres, S., Hartmann, G. (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11: 263–270.Google Scholar
  36. 36.
    Sioud, M. (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 348: 1079–1090.Google Scholar
  37. 37.
    Marques, J. T., Williams, B. R. (2005) Activation of the mammalian immune system by siRNAs. Nat. Biotechnol. 23: 1399–1405.Google Scholar
  38. 38.
    Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G., Linsley, P. S. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21: 635–637.Google Scholar
  39. 39.
    Jackson, A. L., Burchard, J., Schelter, J., Chau, B. N., Cleary, M., Lim, L., Linsley, P. S. (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA - Publ. RNA Soc. 12: 1179–1187.Google Scholar
  40. 40.
    Scacheri, P. C., Rozenblatt-Rosen, O., Caplen, N. J., Wolfsberg, T. G., Umayam, L., Lee, J. C., Hughes, C. M., Shanmugam, K. S., Bhattacharjee, A., Meyerson, M., Collins, F. S. (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101: 1892–1897.Google Scholar
  41. 41.
    Brown, K., Samarsky, D. (2005) RNAi off-targeting: Light at the end of the tunnel. J. RNAi Gene Silencing 2: 175–177.Google Scholar
  42. 42.
    Echeverri, C. J., Beachy, P. A., Baum, B., Boutros, M., Buchholz, F., Chanda, S. K., Downward, J., Ellenberg, J., Fraser, A. G., Hacohen, N., Hahn, W. C., Jackson, A. L., Kiger, A., Linsley, P. S., Lum, L., Ma, Y., Mathey-Prevot, B., Root, D. E., Sabatini, D. M., Taipale, J., Perrimon, N., Bernards, R. (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods 3: 777–779.Google Scholar
  43. 43.
    Snove, O., Jr., Holen, T. (2004) Many commonly used siRNAs risk off-target activity. Biochem. Biophys. Res. Commun. 319: 256–263.Google Scholar
  44. 44.
    Jackson, A. L., Burchard, J., Leake, D., Reynolds, A., Schelter, J., Guo, J., Johnson, J. M., Lim, L., Karpilow, J., Nichols, K., Marshall, W., Khvorova, A., Linsley, P. S. (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA - Publ. RNA Soc. 12: 1197–1205.Google Scholar
  45. 45.
    Birmingham, A., Anderson, E., Sullivan, K., Reynolds, A., Boese, Q., Leake, D., Karpilow, J., Khvorova, A. (2007) A protocol for designing siRNAs with high functionality and specificity. Nat. Protoc. 2: 2068–2078.Google Scholar
  46. 46.
    Peek, A. S., Behlke, M. A. (2007) Design of active small interfering RNAs. Curr. Opin. Mol. Ther. 9: 110–118.Google Scholar
  47. 47.
    Huesken, D., Lange, J., Mickanin, C., Weiler, J., Asselbergs, F., Warner, J., Meloon, B., Engel, S., Rosenberg, A., Cohen, D., Labow, M., Reinhardt, M., Natt, F., Hall, J. (2005) Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23: 995–1001.Google Scholar
  48. 48.
    Tafer, H., Ameres, S. L., Obernosterer, G., Gebeshuber, C. A., Schroeder, R., Martinez, J., Hofacker, I. L. (2008) The impact of target site accessibility on the design of effective siRNAs. Nat. Biotechnol. 26: 578–583.Google Scholar
  49. 49.
    Chalk, A. M., Sonnhammer, E. L. L. (2008) siRNA specificity searching incorporating mismatch tolerance data. Bioinformatics 24: 1316–1317.Google Scholar
  50. 50.
    Matveeva, O., Nechipurenko, Y., Rossi, L., Moore, B., Saetrom, P., Ogurtsov, A. Y., Atkins, J. F., Shabalina, S. A. (2007) Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 35: e63.Google Scholar
  51. 51.
    Ameres, S. L., Martinez, J., Schroeder, R. (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130: 101–112.Google Scholar
  52. 52.
    Vert, J. P., Foveau, N., Lajaunie, C., Vandenbrouck, Y. (2006) An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics 7: 520.Google Scholar
  53. 53.
    Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  54. 54.
    Reynolds, A., Anderson, E. M., Vermeulen, A., Fedorov, Y., Robinson, K., Leake, D., Karpilow, J., Marshall, W. S., Khvorova, A. (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA - Publ. RNA Soc. 12: 988–993.Google Scholar
  55. 55.
    Schmitter, D., Filkowski, J., Sewer, A., Pillai, R. S., Oakeley, E. J., Zavolan, M., Svoboda, P., Filipowicz, W. (2006) Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 34: 4801–4815.Google Scholar
  56. 56.
    Zeng, Y., Cai, X., Cullen, B. R. (2005) Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol. 392: 371–380.Google Scholar
  57. 57.
    Abe, Y., Sinozaki, H., Takagi, T., Minegishi, T., Kokame, K., Kangawa, K., Uesaka, M., Miyamoto, K. (2006) Identification of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible genes in human amniotic epithelial cells. Reprod. Biol. Endocrinol. 4: 27.Google Scholar
  58. 58.
    Hu, X., Herrero, C., Li, W. P., Antoniv, T. T., Falck-Pedersen, E., Koch, A. E., Woods, J. M., Haines, G. K., Ivashkiv, L. B. (2002) Sensitization of IFN-gamma Jak-STAT signaling during macrophage activation. Nat. Immunol. 3: 859–866.Google Scholar
  59. 59.
    Kato, A., Homma, T., Batchelor, J., Hashimoto, N., Imai, S., Wakiguchi, H., Saito, H., Matsumoto, K. (2003) Interferon-alpha/beta receptor-mediated selective induction of a gene cluster by CpG oligodeoxynucleotide 2006. BMC Immunol. 4: 8.Google Scholar
  60. 60.
    Kamezaki, K., Shimoda, K., Numata, A., Matsuda, T., Nakayama, K., Harada, M. (2004) The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals. Int. Immunol. 16: 1173–1179.Google Scholar
  61. 61.
    Sakamoto, S., Qin, J., Navarro, A., Gamero, A., Potla, R., Yi, T., Zhu, W., Baker, D. P., Feldman, G., Larner, A. C. (2004) Cells Previously Desensitized to Type 1 Interferons Display Different Mechanisms of Activation of Stat-dependent Gene Expression from Naive Cells. J. Biol. Chem. 279: 3245–3253.Google Scholar
  62. 62.
    Wang, Z. W., Sarmento, L., Wang, Y., Li, X.-q., Dhingra, V., Tseggai, T., Jiang, B., Fu, Z. F. (2005) Attenuated Rabies Virus Activates, while Pathogenic Rabies Virus Evades, the Host Innate Immune Responses in the Central Nervous System. J. Virol. 79: 12554–12565.Google Scholar
  63. 63.
    Stewart, M. J., Smoak, K., Blum, M. A., Sherry, B. (2005) Basal and Reovirus-Induced Beta Interferon (IFN-{beta}) and IFN-{beta}-Stimulated Gene Expression Are Cell Type Specific in the Cardiac Protective Response. J. Virol. 79: 2979–2987.Google Scholar
  64. 64.
    Pauls, E., Senserrich, J., Bofill, M., Clotet, B., Este, J. A. (2007) Induction of interleukins IL-6 and IL-8 by siRNA. Clin. Exp. Immunol. 147: 189–196.Google Scholar
  65. 65.
    Yang, R., Murillo, F. M., Cui, H., Blosser, R., Uematsu, S., Takeda, K., Akira, S., Viscidi, R. P., Roden, R. B. S. (2004) Papillomavirus-Like Particles Stimulate Murine Bone Marrow-Derived Dendritic Cells To Produce Alpha Interferon and Th1 Immune Responses via MyD88. J. Virol. 78: 11152–11160.Google Scholar
  66. 66.
    Bolcato-Bellemin, A.-L., Bonnet, M.-E., Creusat, G., Erbacher, P., Behr, J.-P. (2007) Sticky overhangs enhance siRNA-mediated gene silencing. Proc. Natl. Acad. Sci. USA 104: 16050–16055.Google Scholar
  67. 67.
    Cekaite, L., Furset, G., Hovig, E., Sioud, M. (2007) Gene expression analysis in blood cells in response to unmodified and 2’-modified siRNAs reveals TLR-dependent and independent effects. J. Mol. Biol. 365: 90–108.Google Scholar
  68. 68.
    Persengiev, S. P., Zhu, X., Green, M. R. (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA - Publ. RNA Soc. 10: 12–18.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations