Integrin-Targeted Stabilized Nanoparticles for an Efficient Delivery of siRNAs In Vitro and In Vivo

  • Charudharshini Srinivasan
  • Dan Peer
  • Motomu ShimaokaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 820)


Utilizing small interfering RNAs (siRNAs) to silence disease-associated genes holds promise as a potential therapeutic strategy. However, the greatest challenge for RNAi remains the delivery of siRNA to target tissues or cells. Specifically lymphocytes are difficult to transduce by conventional methods but represent good targets for anti-inflammatory therapeutics. Integrins are an important class of cell adhesion receptors on leukocytes. Antibodies to integrins have been used to inhibit inflammatory reactions in patients. Here, we describe a strategy to deliver the siRNA cargo to leukocytes by stabilized nanoparticles surface-decorated with antibodies to integrin as targeting moieties. A detailed methodology for preparation of the integrin-targeted stabilized nanoparticles (I-tsNPs) and their delivery in vitro and in vivo is discussed.

Key words

Liposomes RNAi Leukocytes Inflammation Hyaluronan Antibody Transfection Systemic delivery 


  1. 1.
    Morrissey, D. V., Lockridge, J. A., Shaw, L., Blanchard, K., Jensen, K., Breen, W., Hartsough, K., Machemer, L., Radka, S., Jadhav, V., Vaish, N., Zinnen, S., Vargeese, C., Bowman, K., Shaffer, C. S., Jeffs, L. B., Judge, A., MacLachlan, I., Polisky, B. (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23: 1002–1007.PubMedCrossRefGoogle Scholar
  2. 2.
    Zimmermann, T. S., Lee, A. C., Akinc, A., Bramlage, B., Bumcrot, D., Fedoruk, M. N., Harborth, J., Heyes, J. A., Jeffs, L. B., John, M., Judge, A. D., Lam, K., McClintock, K., Nechev, L. V., Palmer, L. R., Racie, T., Rohl, I., Seiffert, S., Shanmugam, S., Sood, V., Soutschek, J., Toudjarska, I., Wheat, A. J., Yaworski, E., Zedalis, W., Koteliansky, V., Manoharan, M., Vornlocher, H. P., MacLachlan, I. (2006) RNAi-mediated gene silencing in non-human primates. Nature 441: 111–114.PubMedCrossRefGoogle Scholar
  3. 3.
    Akinc, A., Zumbuehl, A., Goldberg, M., Leshchiner, E. S., Busini, V., Hossain, N., Bacallado, S. A., Nguyen, D. N., Fuller, J., Alvarez, R., Borodovsky, A., Borland, T., Constien, R., de Fougerolles, A., Dorkin, J. R., Narayanannair Jayaprakash, K., Jayaraman, M., John, M., Koteliansky, V., Manoharan, M., Nechev, L., Qin, J., Racie, T., Raitcheva, D., Rajeev, K. G., Sah, D. W., Soutschek, J., Toudjarska, I., Vornlocher, H. P., Zimmermann, T. S., Langer, R., Anderson, D. G. (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26: 561–569.PubMedCrossRefGoogle Scholar
  4. 4.
    Khan, A., Benboubetra, M., Sayyed, P. Z., Ng, K. W., Fox, S., Beck, G., Benter, I. F., Akhtar, S. (2004) Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J. Drug Target. 12: 393–404.CrossRefGoogle Scholar
  5. 5.
    Kawakami, S., Hashida, M. (2007) Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab. Pharmacokinet. 22: 142–151.PubMedCrossRefGoogle Scholar
  6. 6.
    Dykxhoorn, D. M., Lieberman, J. (2005) The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 56: 401–423.PubMedCrossRefGoogle Scholar
  7. 7.
    Akhtar, S., Benter, I. F. (2007) Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117: 3623–3632.PubMedCrossRefGoogle Scholar
  8. 8.
    Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E., Triche, T. J. (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65: 8984–8992.PubMedCrossRefGoogle Scholar
  9. 9.
    Song, E., Zhu, P., Lee, S. K., Chowdhury, D., Kussman, S., Dykxhoorn, D. M., Feng, Y., Palliser, D., Weiner, D. B., Shankar, P., Marasco, W. A., Lieberman, J. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23: 709–717.PubMedCrossRefGoogle Scholar
  10. 10.
    Pirollo, K. F., Rait, A., Zhou, Q., Hwang, S. H., Dagata, J. A., Zon, G., Hogrefe, R. I., Palchik, G., Chang, E. H. (2007) Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 67: 2938–2943.PubMedCrossRefGoogle Scholar
  11. 11.
    Behlke, M. A. (2006) Progress towards in vivo use of siRNAs. Mol. Ther. 13: 644–670.PubMedCrossRefGoogle Scholar
  12. 12.
    Goffinet, C., Keppler, O. T. (2006) Efficient nonviral gene delivery into primary lymphocytes from rats and mice. Faseb J. 20: 500–502.PubMedGoogle Scholar
  13. 13.
    Marodon, G., Mouly, E., Blair, E. J., Frisen, C., Lemoine, F. M., Klatzmann, D. (2003) Specific transgene expression in human and mouse CD4+ cells using lentiviral vectors with regulatory sequences from the CD4 gene. Blood 101: 3416–3423.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Lu, H., LiWang, P., Sili, U., Templeton, N. S. (2003) Optimization of gene expression in nonactivated circulating lymphocytes. Mol. Ther. 8: 629–636.PubMedCrossRefGoogle Scholar
  15. 15.
    Lai, W., Chang, C. H., Farber, D. L. (2003) Gene transfection and expression in resting and activated murine CD4 T cell subsets. J. Immunol. Methods 282: 93–102.PubMedCrossRefGoogle Scholar
  16. 16.
    Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P., Lieberman, J. (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9: 347–351.PubMedCrossRefGoogle Scholar
  17. 17.
    Peer, D., Park, E. J., Morishita, Y., Carman, C. V., Shimaoka, M. (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319: 627–630.PubMedCrossRefGoogle Scholar
  18. 18.
    Peer, D., Zhu, P., Carman, C. V., Lieberman, J., Shimaoka, M. (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. USA 104: 4095–4100.PubMedCrossRefGoogle Scholar
  19. 19.
    Luo, B. H., Carman, C. V., Springer, T. A. (2007) Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25: 619–647.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhu, J., Carman, C. V., Kim, M., Shimaoka, M., Springer, T. A., Luo, B. H. (2007) Requirement of alpha and beta subunit transmembrane helix separation for integrin outside-in signaling. Blood 110: 2475–2483.PubMedCrossRefGoogle Scholar
  21. 21.
    Peer, D., Shimaoka, M. (2009) Systemic siRNA delivery to leukocyte-implicated diseases. Cell Cycle 8: 853–859.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim, S. S., Peer, D., Kumar, P., Subramanya, S., Wu, H., Asthana, D., Habiro, K., Yang, Y. G., Manjunath, N., Shimaoka, M., Shankar, P. (2010) RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice Mol. Ther. 18: 370–376.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Charudharshini Srinivasan
    • 1
    • 2
    • 3
  • Dan Peer
    • 4
  • Motomu Shimaoka
    • 1
    • 2
    • 3
    Email author
  1. 1.Immune Disease InstituteBostonUSA
  2. 2.Program in Cellular and Molecular Medicine, Children’s Hospital BostonBostonUSA
  3. 3.Department of AnesthesiaHarvard Medical SchoolBostonUSA
  4. 4.Laboratory of Nanomedicine, Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, and the Center for Nanoscience and NanotechnologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations