Interleukin-27 Induces Interferon-Inducible Genes: Analysis of Gene Expression Profiles Using Affymetrix Microarray and DAVID

  • Tomozumi ImamichiEmail author
  • Jun Yang
  • Da Wei Huang
  • Brad Sherman
  • Richard A. Lempicki
Part of the Methods in Molecular Biology book series (MIMB, volume 820)


We have previously demonstrated that IL-27 is a novel anti-HIV cytokine, which inhibits HIV replication in CD4 T cells and macrophages as interferon (IFN)-α does. To further understand the mechanism of the antiviral effect, we performed Affymetrix DNA microarray and gene functional annotation analysis using DAVID (the Database for Annotation, Visualization, and Integrated Discovery). DAVID is a web-based bioinformatics application that systematically identifies enriched biology associated with large gene list(s) derived from high-throughput genomic experiments, such as microarray. The enriched annotation terms identified by DAVID will give important insights into understanding the biological themes under study. Having used the DAVID bioinformatics tools, we have shown that IL-27 differentially regulates the gene expression between T cells and macrophages. IL-27 significantly induces IFN-inducible genes including antiviral genes in macrophages as does IFN-α, suggesting that IL-27 inhibits HIV replication in macrophages via a mechanism similar to that of IFN-α.

Key words

IL-27 IFN-inducible genes Microarray DAVID T cells Macrophages 


  1. 1.
    Pflanz, S., Timans, J.C., Cheung, J., Rosales, R., Kanzler, H., Gilbert, J., Hibbert, L., Churakova, T., Travis, M., Vaisberg, E., Blumenschein, W.M, Mattson, J.D., Wagner, J. L., To, W., Zurawski, S., McClanahan, T.K., Gorman, D.M., Bazan J.F., de Waal Malefyt, R., Rennick, D., Kastelein, R.A. (2002) IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4 (+) T cells. Immunity 16: 779–790.PubMedCrossRefGoogle Scholar
  2. 2.
    Hunter, C.A. (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 5: 521–531.PubMedCrossRefGoogle Scholar
  3. 3.
    Foli, A., Saville, M.W., Baseler, M.W., Yarchoan, R. (1995) Effects of the Th1 and Th2 stimulatory cytokines interleukin-12 and interleukin-4 on human immunodeficiency virus replication. Blood 85: 2114–2123.PubMedGoogle Scholar
  4. 4.
    Fakruddin, J. M., Lempicki, R.A., Gorelick, R.J., Yang, J., Adelsberger, J.W., Garcia-Pineres, A.J., Pinto, L.A., Lane, H.C., Imamichi, T. (2007) Noninfectious papilloma virus-like particles inhibit HIV-1 replication: implications for immune control of HIV-1 infection by IL-27. Blood 109: 1841–1849.PubMedCrossRefGoogle Scholar
  5. 5.
    Imamichi, T., Yang, J., Huang, D.W., Brann, T.W., Fullmer, B.A., Adelsberger, J.W., Lempicki, R.A., Baseler, M.W., Lane, H.C. (2008) IL-27, a novel anti-HIV cytokine, activates multiple interferon-inducible genes in macrophages. AIDS 22: 39–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Langer, J.A., Cutrone, E.C., Kotenko, S. (2004) The class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactions. Cytokine Growth Factor Rev. 15: 33–48.PubMedCrossRefGoogle Scholar
  7. 7.
    Pestka, S., Langer, J.A., Zoon, K.C., Samuel, C.E. (1987) Interferons and their actions. Annu. Rev. Biochem. 56: 727–777.PubMedCrossRefGoogle Scholar
  8. 8.
    Galligan, C.L., Murooka, T.T., Rahbar, R., Baig, E., Majchrzak-Kita, B., Fish, E.N. (2006) Interferons and viruses: signaling for supremacy. Immunol. Res. 35: 27–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Samuel, C.E. (2001) Antiviral actions of interferons. Clin. Microbiol. Rev. 14: 778–809.PubMedCrossRefGoogle Scholar
  10. 10.
    Dennis, G. Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., Lempicki, R.A. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4: R60.CrossRefGoogle Scholar
  11. 11.
    Huang, D.W., Sherman, B.T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M.W., Lane, H.C., Lempicki, R.A. (2007) DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35: W169–W175.CrossRefGoogle Scholar
  12. 12.
    Huang, D.W., Sherman, BT., Lempicki, R.A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37: 1–13.CrossRefGoogle Scholar
  13. 13.
    Lim, W.K., Wang, K., Lefebvre, C., Califano, A. (2007) Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 23: i282–i288.PubMedCrossRefGoogle Scholar
  14. 14.
    Harr, B., Schlötterer, C. (2006) Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons. Nucleic Acids Res. 34: e8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tomozumi Imamichi
    • 1
    Email author
  • Jun Yang
    • 2
  • Da Wei Huang
    • 2
  • Brad Sherman
    • 2
  • Richard A. Lempicki
    • 2
  1. 1.Laboratory of Human Retrovirology, Clinical Services Programs (CSP), Applied Developmental Directorate (ADD)Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute (NCI)-FrederickFrederickUSA
  2. 2.Laboratory of Immunopathogenesis and BioinformaticsCSP, ADD, SAIC-Frederick, Inc., NCI-FrederickFrederickUSA

Personalised recommendations