The Use of Real-Time Quantitative PCR for the Analysis of Cytokine mRNA Levels

  • Maria Forlenza
  • Thomas Kaiser
  • Huub F. J. Savelkoul
  • Geert F. WiegertjesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 820)


Over the last decade, real-time-quantitative PCR (RT-qPCR) analysis has become the method of choice not only for quantitative and accurate measurement of mRNA expression levels, but also for sensitive detection of rare or mutated DNA species in diagnostic research. RT-qPCR is based on the standard principles of PCR amplification in addition to the use of specific probes or intercalating fluorescence dyes. At the end of every cycle, the intercalating dye binds to all double-stranded DNA. There is a quantitative relationship between the amount of starting DNA and the amount of amplification product during the exponential phase. However, to obtain meaningful RT-qPCR data, the quality of the starting material (RNA, DNA) and the analysis method of choice are of crucial importance. In this chapter, we focus on the details of RNA isolation and cDNA synthesis methods, on the application of RT-qPCR for measurements of cytokine mRNA levels using Sybr-Green I as detection chemistry, and finally, we discuss the pros and contras of the absolute quantification versus relative quantification analysis. RT-qPCR is a powerful tool, but it should be “handled” with care.

Key words

Real-time-quantitative PCR Absolute quantification Relative quantification Primer efficiency Housekeeping gene 


  1. 1.
    Nolan, T., Hands, R.E., Bustin, S.A. (2006) Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1: 1559–1582.PubMedCrossRefGoogle Scholar
  2. 2.
    Bustin, S.A., Benes, V., Nolan, T., Pfaffl, M.W. (2005) Quantitative real-time RT-PCR - a perspective. J. Mol. Endocrinol. 34: 597–601.PubMedCrossRefGoogle Scholar
  3. 3.
    Pfaffl, M.W., Hageleit, M. (2001) Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol. Lett. 23: 275–282.CrossRefGoogle Scholar
  4. 4.
    Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45.PubMedCrossRefGoogle Scholar
  5. 5.
    Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034.Google Scholar
  6. 6.
    Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26: 509–515.PubMedCrossRefGoogle Scholar
  7. 7.
    Latorra, D., Arar, K., Hurley, J.M. (2003) Design considerations and effects of LNA in PCR primers. Mol. Cell. Probes 17: 253–259.PubMedCrossRefGoogle Scholar
  8. 8.
    Latorra, D., Campbell, K., Wolter, A., Hurley, J.M. (2003) Enhanced allele-specific PCR discrimination in SNP genotyping using 3′ locked nucleic acid (LNA) primers. Hum. Mutat. 22: 79–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Livak, K.J., Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method. Methods 25: 402–408.PubMedCrossRefGoogle Scholar
  10. 10.
    Pfaffl, M.W., Horgan, G.W., Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu, W., Saint, D.A. (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 302: 52–59.PubMedCrossRefGoogle Scholar
  12. 12.
    Ramakers, C., Ruijter, J.M., Deprez, R.H., Moorman, A.F. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339: 62–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Tichopad, A., Dilger, M., Schwarz, G., Pfaffl, M.W. (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31: e122.PubMedCrossRefGoogle Scholar
  14. 14.
    Forlenza, M., de Carvalho Dias, J.D., Vesely, T., Pokorova, D., Savelkoul, H.F., Wiegertjes, G.F. (2008) Transcription of signal-3 cytokines, IL-12 and IFN alpha beta, coincides with the timing of CD8 alpha beta up-regulation during viral infection of common carp (Cyprinus carpio L). Mol. Immunol. 45: 1531–1547.PubMedCrossRefGoogle Scholar
  15. 15.
    Fleige, S., Pfaffl, M.W. (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Asp. Med. 27: 126–139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maria Forlenza
    • 1
  • Thomas Kaiser
    • 1
  • Huub F. J. Savelkoul
    • 2
  • Geert F. Wiegertjes
    • 3
    Email author
  1. 1.Cell Biology and Immunology group, Department of Animal SciencesWageningen UniversityWageningenNetherlands
  2. 2.Cell Biology & Immunology group, Department of Animal SciencesWageningen UniversityWageningenNetherlands
  3. 3.Department of Animal Sciences, Cell Biology & Immunology groupWageningen UniversityWageningenNetherlands

Personalised recommendations