In Vitro Stimulation and Detection of IFNα Production in Human Plasmacytoid Dendritic Cells

  • William C. Adams
  • Karin LoréEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 820)


Type-1 interferons (IFNs), including IFNα/β, are a family of cytokines produced rapidly upon pathogen encounter and crucial for bridging innate and adaptive immunity. IFNα has been widely appreciated as a multifunctional cytokine involved particularly in early immune responses against viral, bacterial, and parasitic infections. Although most cells may be competent to produce IFNα during specific conditions, plasmacytoid dendritic cells (PDCs) are unique in their capacity to produce rapid and robust levels in response to various pathogens. PDCs to a great extent utilize toll-like receptor (TLR) 7 and 9, localized in early endosomes, to sense pathogen-associated nucleic acids, and initiate the signaling cascade leading to induction of IFNα. Here, we provide basic protocols for the detection of IFNα in individual immune cells, particularly PDCs, using flow cytometry. We discuss the key elements for successful isolation of PDCs, stimulation, immunostaining, and identification of IFNα producing cells.

Key words

IFNalpha Cytokine Flow cytometry Plasmacytoid dendritic cells Toll-like receptor Intracellular cytokine staining 



This work was supported by grants from the Swedish Research Council (Ventenskapsrådet), the Swedish Society for Medicine, and the Swedish International Development Agency (SIDA).


  1. 1.
    Akira, S., Takeda, K., Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2: 675–680.PubMedCrossRefGoogle Scholar
  2. 2.
    Takeuchi, O., Akira, S. (2009) Innate immunity to virus infection. Immunol. Rev. 227: 75–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Cao, W., Liu, Y.J. (2007) Innate immune functions of plasmacytoid dendritic cells. Curr. Opin. Immunol. 19: 24–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Siegal, F.P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P.A., Shah, K., Ho, S., Antonenko, S., Liu, Y.J. (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284: 1835–1837.PubMedCrossRefGoogle Scholar
  5. 5.
    Vollmer, J., Weeratna, R., Payette, P., Jurk, M., Schetter, C., Laucht, M., Wader, T., Tluk, S., Liu, M., Davis, H. L., Krieg, A.M. (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur. J. Immunol. 34: 251–262.PubMedCrossRefGoogle Scholar
  6. 6.
    Lore, K., Smed-Sorensen, A., Vasudevan, J., Mascola, J.R., Koup, R.A. (2005) Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J. Exp. Med. 201: 2023–2033.PubMedCrossRefGoogle Scholar
  7. 7.
    Smed-Sorensen, A., Lore, K., Vasudevan, J., Louder, M.K., Andersson, J., Mascola, J.R., Spetz, A.L., Koup, R.A. (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J. Virol. 79: 8861–8869.PubMedCrossRefGoogle Scholar
  8. 8.
    Adams, W.C., Bond, E., Havenga, M.J., Holterman, L., Goudsmit, J., Karlsson Hedestam, G.B., Koup, R.A., Lore, K. (2009) Adenovirus Serotype 5 Infects Human Dendritic Cells via a Coxsackievirus-Adenovirus Receptor-independent Receptor Pathway Mediated by Lactoferrin and DC-SIGN. J. Gen. Virol. 90: 16001610.PubMedCrossRefGoogle Scholar
  9. 9.
    Lore, K., Adams, W.C., Havenga, M.J., Precopio, M.L., Holterman, L., Goudsmit, J., Koup, R.A. (2007) Myeloid and plasmacytoid dendritic cells are susceptible to recombinant adenovirus vectors and stimulate polyfunctional memory T cell responses. J. Immunol. 179: 1721–1729.PubMedGoogle Scholar
  10. 10.
    Ito, T., Kanzler, H., Duramad, O., Cao, W., Liu, Y.J. (2006) Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood 107: 2423–2431.PubMedCrossRefGoogle Scholar
  11. 11.
    Lore, K. (2004) Isolation and immunophenotyping of human and rhesus macaque dendritic cells. Method. Cell Biol. 75: 623–642.CrossRefGoogle Scholar
  12. 12.
    Roederer, M. (2004). Conjugation of monoclonal antibodies:
  13. 13.
    Douagi, I., Gujer, C., Sundling, C., Adams, W.C., Smed-Sorensen, A., Seder, R.A., Karlsson Hedestam, G.B., Lore, K. (2009) Human B Cell Responses to TLR Ligands Are Differentially Modulated by Myeloid and Plasmacytoid Dendritic Cells. J. Immunol. 182: 1991–2001.PubMedCrossRefGoogle Scholar
  14. 14.
    Dzionek, A., Fuchs, A., Schmidt, P., Cremer, S., Zysk, M., Miltenyi, S., Buck, D.W., Schmitz, J. (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165: 6037–6046.PubMedGoogle Scholar
  15. 15.
    Dzionek, A., Sohma, Y., Nagafune, J., Cella, M., Colonna, M., Facchetti, F., Gunther, G., Johnston, I., Lanzavecchia, A., Nagasaka, T., Okada, T., Vermi, W., Winkels, G., Yamamoto, T., Zysk, M., Yamaguchi, Y., Schmitz, J. (2001) BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J. Exp. Med. 194: 1823–1834.PubMedCrossRefGoogle Scholar
  16. 16.
    MacDonald, K.P., Munster, D.J., Clark, G.J., Dzionek, A., Schmitz, J., Hart, D.N. (2002) Characterization of human blood dendritic cell subsets. Blood 100: 4512–4520.PubMedCrossRefGoogle Scholar
  17. 17.
    Lore, K., Betts, M.R., Brenchley, J.M., Kuruppu, J., Khojasteh, S., Perfetto, S., Roederer, M., Seder, R.A., Koup, R.A. (2003) Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J. Immun. 171: 4320–4328.PubMedGoogle Scholar
  18. 18.
    Lambert, H., Vutova, P.P., Adams, W.C., Lore, K., Barragan, A. (2009) The Toxoplasma gondii-shuttling Function of Dendritic Cells Is Linked to Parasite Genotype. Infect. Immun. 77: 16791688PubMedCrossRefGoogle Scholar
  19. 19.
    Beignon, A.S., McKenna, K., Skoberne, M., Manches, O., DaSilva, I., Kavanagh, D. G., Larsson, M., Gorelick, R.J., Lifson, J.D., Bhardwaj, N. (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J. Clin. Invest. 115: 3265–3275.PubMedCrossRefGoogle Scholar
  20. 20.
    Iacobelli-Martinez, M., Nemerow, G.R. (2007) Preferential activation of Toll-like receptor nine by CD46-utilizing adenoviruses. J. Virol. 81: 1305–1312.PubMedCrossRefGoogle Scholar
  21. 21.
    Iwasaki, A., Medzhitov, R. (2004) Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987–995.PubMedCrossRefGoogle Scholar
  22. 22.
    Mollenhauer, H.H., Morre, D.J., Rowe, L.D. (1990) Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim. Biophys. Acta 1031: 225–246.PubMedCrossRefGoogle Scholar
  23. 23.
    Andersson, J., Nagy, S., Bjork, L., Abrams, J., Holm, S., Andersson, U. (1992) Bacterial toxin-induced cytokine production studied at the single-cell level. Immunol. Rev. 127: 69–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Sander, B., Andersson, J., Andersson, U. (1991) Assessment of cytokines by immunofluorescence and the paraformaldehyde- saponin procedure. Immunol. Rev. 119: 65–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine, Center for Infectious MedicineKarolinska University Hospital HuddingeStockholmSweden

Personalised recommendations