Advertisement

Ligand Affinity Chromatography, an Indispensable Method for the Purification of Soluble Cytokine Receptors and Binding Proteins

  • Daniela NovickEmail author
  • Menachem Rubinstein
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 820)

Abstract

Ligand affinity chromatography separation is based on unique interaction between the target analyte and a ligand, which is coupled covalently to a resin. It is a simple, rapid, selective, and efficient purification procedure of proteins providing tens of thousands fold purification in one step. The biological activity of the isolated proteins is retained in most cases thus function is revealed concomitantly with the isolation. Prior to the completion of the genome project this method facilitated rapid and reliable cloning of the corresponding gene. Upon completion of this project, a partial protein sequence is enough for retrieving its complete mRNA and hence its complete protein sequence. This method is indispensable for the isolation of both expected (e.g. receptors) but mainly unexpected, unpredicted and very much surprising binding proteins. No other approach would yield the latter. This chapter provides examples for both the expected target proteins, isolated from rich sources of human proteins, as well as the unexpected binding proteins, found by serendipity.

Key words

TBPII IFNAR2 Soluble LDLR IL-18BP IL-32BP PR3 Mass spectrometry Biomarkers Interleukins Interferons Serendipity 

References

  1. 1.
    Cuatrecasas, P., Wilchek, M., Anfinsen, C.B. (1968) Selective enzyme purification by affinity chromatography. Proc. Natl. Acad. Sci. USA 61: 636–643.PubMedCrossRefGoogle Scholar
  2. 2.
    Uhlen, M. (2008) Affinity as a tool in life science. BioTechniques 44: 649–654.PubMedCrossRefGoogle Scholar
  3. 3.
    Roque, A.C., Lowe, C.R. (2008) Affinity chromatography: history, perspectives, limitations and prospects. Methods Mol. Biol. 421: 1–21.PubMedGoogle Scholar
  4. 4.
    Tartaglia, L.A., Goeddel, D.V. (1992) Two TNF receptors. Immunol. Today 13: 151–153.Google Scholar
  5. 5.
    Chizzonite, R., Truitt, T., Kilian, P.L., Stern, A.S., Nunes, P., Parker, K.P., Kaffka, K.L., Chua, A.O., Lugg, D.K., Gubler, U. (1989) Two high-affinity interleukin 1 receptors represent separate gene products. Proc. Natl. Acad. Sci. USA 86: 8029–8033.PubMedCrossRefGoogle Scholar
  6. 6.
    Novick, D., Cohen, B., Rubinstein, M. (1994) The human interferon alpha/beta receptor: characterization and molecular cloning. Cell 77: 391–400.PubMedCrossRefGoogle Scholar
  7. 7.
    Domanski, P., Witte, M., Kellum, M., Rubinstein, M., Hackett, R., Pitha, P., Colamonici, O.R. (1995) Cloning and expression of a long form of the beta subunit of the interferon alpha beta receptor that is required for signaling. J. Biol. Chem. 270: 21606–21611.PubMedCrossRefGoogle Scholar
  8. 8.
    Marcon, L., Fritz, M.E., Kurman, C.C., Jensen, J.C., Nelson, D.L. (1988) Soluble Tac peptide is present in the urine of normal individuals and at elevated levels in patients with adult T cell leukaemia (ATL). Clin. Exp. Immunol. 73: 29–33.PubMedGoogle Scholar
  9. 9.
    Levine, S.J. (2008) Molecular mechanisms of soluble cytokine receptor generation. J. Biol. Chem. 283: 14177–14181.PubMedCrossRefGoogle Scholar
  10. 10.
    Novick, D., Engelmann, H., Wallach, D., Rubinstein, M. (1989) Soluble cytokine receptors are present in normal human urine. J. Exp. Med. 170: 1409–1414.PubMedCrossRefGoogle Scholar
  11. 11.
    Engelmann, H., Novick, D., Wallach, D. (1990) Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J. Biol. Chem. 265: 1531–1536.PubMedGoogle Scholar
  12. 12.
    Abeck, D., Korting, H.C., Zaba, R., Dangor, Y., Fehler, G., Ballard, R.C. (1990) Soluble interleukin-2 receptors in serum and urine of patients with chancroid and their response to therapy. Int. J. STD AIDS 1: 282–284.PubMedGoogle Scholar
  13. 13.
    Christie, G., Dacey, I., Weston, B.J. (1995) Identification of a soluble, high affinity human interleukin 4 binding protein in normal human urine. Cytokine 7: 305–310.PubMedCrossRefGoogle Scholar
  14. 14.
    Fanslow, W.C., Clifford, K., VandenBos, T., Teel, A., Armitage, R.J., Beckmann, M.P. (1990) A soluble form of the interleukin 4 receptor in biological fluids. Cytokine 2: 398–401.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, J.G., Hilton, D.J., Willson, T.A., McFarlane, C., Roberts, B.A., Moritz, R.L., Simpson, R.J., Alexander, W.S., Metcalf, D., Nicola, N.A. (1997) Identification, purification, and characterization of a soluble interleukin (IL)-13-binding protein. Evidence that it is distinct from the cloned IL-13 receptor and IL-4 receptor alpha-chains. J. Biol. Chem. 272: 9474–9480.PubMedCrossRefGoogle Scholar
  16. 16.
    Veenbergen, S., Smeets, R.L., Bennink, M.B., Arntz, O.J., Joosten, L.A., van den Berg, W.B., van de Loo, F.A. (2010) The natural soluble form of IL-18 receptor {beta} exacerbates collagen-induced arthritis via modulation of T cell immune responses. Ann. Rheum. Dis. 69: 276–283.PubMedCrossRefGoogle Scholar
  17. 17.
    Xu, W., Presnell, S.R., Parrish-Novak, J., Kindsvogel, W., Jaspers, S., Chen, Z., Dillon, S.R., Gao, Z., Gilbert, T., Madden, K., Schlutsmeyer, S., Yao, L., Whitmore, T.E., Chandrasekher, Y., Grant, F.J., Maurer, M., Jelinek, L., Storey, H., Brender, T., Hammond, A., Topouzis, S., Clegg, C.H., Foster, D.C. (2001) A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist, Proc. Natl. Acad. Sci. U. S. A. 98: 9511–9516.PubMedCrossRefGoogle Scholar
  18. 18.
    Hayakawa, H., Hayakawa, M., Kume, A., Tominaga, S. (2007) Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem. 282: 26369–26380.PubMedCrossRefGoogle Scholar
  19. 19.
    Meissner, U., Blum, H., Schnare, M., Rollinghoff, M., Gessner, A. (2001) A soluble form of the murine common gamma chain is present at high concentrations in vivo and suppresses cytokine signaling. Blood 97: 183–191.PubMedCrossRefGoogle Scholar
  20. 20.
    Yasuda, H., Shima, N., Nakagawa, N., Mochizuki, S.I., Yano, K., Fujise, N., Sato, Y., Goto, M., Yamaguchi, K., Kuriyama, M., Kanno, T., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K. (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329–1337.PubMedCrossRefGoogle Scholar
  21. 21.
    Elson, G.C., Graber, P., Losberger, C., Herren, S., Gretener, D., Menoud, L.N., Wells, T.N., Kosco-Vilbois, M.H., Gauchat, J.F. (1998) Cytokine-like factor-1, a novel soluble protein, shares homology with members of the cytokine type I receptor family. J. Immunol. 161: 1371–1379.PubMedGoogle Scholar
  22. 22.
    Novick, D., Kim, S.H., Fantuzzi, G., Reznikov, L.L., Dinarello, C.A., Rubinstein, M. (1999) Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10: 127–136.PubMedCrossRefGoogle Scholar
  23. 23.
    Novick, D., Rubinstein, M., Azam, T., Rabinkov, A., Dinarello, C.A., Kim, S.H. (2006) Proteinase 3 is an IL-32 binding protein. Proc. Natl. Acad. Sci. USA 103: 3316–3321.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim, S.H., Han, S.Y., Azam, T., Yoon, D.Y., Dinarello, C.A. (2005) Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 22: 131–142.PubMedGoogle Scholar
  25. 25.
    Frosch, M., Foell, D. (2004) Wegener granulomatosis in childhood and adolescence. Eur. J. Pediatr. 163: 425–434.PubMedCrossRefGoogle Scholar
  26. 26.
    Fischer, D.G., Tal, N., Novick, D., Barak, S., Rubinstein, M. (1993) An antiviral soluble form of the LDL receptor induced by interferon. Science 262: 250–253.PubMedCrossRefGoogle Scholar
  27. 27.
    Engelmann, H., Aderka, D., Rubinstein, M., Rotman, D., Wallach, D. (1989) A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J. Biol. Chem. 264: 11974–11980.PubMedGoogle Scholar
  28. 28.
    Hock, R.A., Hollenberg, M.D. (1980) Characterization of the receptor for epidermal growth factor-urogastrone in human placenta membranes. J. Biol. Chem. 255: 10731–10736.PubMedGoogle Scholar
  29. 29.
    Rubinstein, M. (1979) Preparative high perofmance liquid chromatography of proteins. Anal. Biochem. 97: 1–7.CrossRefGoogle Scholar
  30. 30.
    Marshall, T., Williams, K.M. (1984) Artifacts associated with 2-mercaptoethanol upon high resolution two-dimensional electrophoresis. Anal. Biochem. 139: 502–505.PubMedCrossRefGoogle Scholar
  31. 31.
    Oakley, B.R., Kirsch, D.R., Morris, N.R. (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361–363.PubMedCrossRefGoogle Scholar
  32. 32.
    Hunter, W. M. (1978) Radioimmunoassay. The Hanbook of Experimental Immunology (D. M. Weir, Ed.), Blackwell Press, Oxford, 14.11-14.30.Google Scholar
  33. 33.
    Bolton, A.E., Hunter, W.M. (1973) The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem. J. 133: 529–539.PubMedGoogle Scholar
  34. 34.
    Novick, D., Cohen, B., Rubinstein, M. (1992) Soluble interferon-alpha receptor molecules are present in body fluids. FEBS Lett. 314: 445–448.PubMedCrossRefGoogle Scholar
  35. 35.
    Mosley, B., Beckmann, M.P., March, C.J., Idzerda, R.L., Gimpel, S.D., VandenBos, T., Friend, D., Alpert, A., Anderson, D., Jackson, J., Wignall, J.M., Smith, C., Gallis, B., Sims, J.E., Urdal, D., Widmer, M.B., Cosman, D., Park, L.S. (1989) The murine interleukin-4 receptor: molecular cloning and characterization of secreted and membrane bound forms. Cell 59: 335–348.PubMedCrossRefGoogle Scholar
  36. 36.
    Aderka, D., Engelmann, H., Maor, Y., Brakebusch, C., Wallach, D. (1992) Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J. Exp. Med. 175: 323–329.PubMedCrossRefGoogle Scholar
  37. 37.
    Narazaki, M., Yasukawa, K., Saito, T., Ohsugi, Y., Fukui, H., Koishihara, Y., Yancopoulos, G.D., Taga, T., Kishimoto, T. (1993) Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82: 1120–1126.PubMedGoogle Scholar
  38. 38.
    Kim, S.H., Eisenstein, M., Reznikov, L., Fantuzzi, G., Novick, D., Rubinstein, M., Dinarello, C.A. (2000) Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc. Natl. Acad. Sci. USA 97: 1190–1195.PubMedCrossRefGoogle Scholar
  39. 39.
    Xiang, Y., Moss, B. (1999) Identification of human and mouse homologs of the MC51L-53L-54L family of secreted glycoproteins encoded by the Molluscum contagiosum poxvirus. Virology 257: 297–302.PubMedCrossRefGoogle Scholar
  40. 40.
    Alcami, A. (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3: 36–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Cohen, B., Novick, D., Barak, S., Rubinstein, M. (1995) Ligand-induced association of the type I interferon receptor components. Mol. Cell. Biol. 15: 4208–4214.PubMedGoogle Scholar
  42. 42.
    Novick, D., Rubinstein, M. (2007) The tale of soluble receptors and binding proteins: from bench to bedside. Cytokine Growth Factor Rev. 18: 525–533.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen, C.H. (2008) Review of a current role of mass spectrometry for proteome research. Anal. Chim. Acta 624: 16–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Sparbier, K., Wenzel, T., Dihazi, H., Blaschke, S., Müller, G.A., Deelder, A., Flad, T., Kostrzewa, M. (2009) Immuno-MALDI-TOF MS: New perspectives for clinical applications of mass spectrometry. Proteomics 9: 14421450.PubMedCrossRefGoogle Scholar
  45. 45.
    Conrotto P, Souchelnytskyi S. (2008) Proteomic approaches in biological and medical sciences: principles and applications. Exp. Oncol. 30: 171–80.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations