Advertisement

shRNA-Induced Interferon-Stimulated Gene Analysis

  • Núria MorralEmail author
  • Scott R. Witting
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 820)

Abstract

RNA interference (RNAi) is a cellular mechanism to inhibit the expression of gene products in a highly specific manner. In recent years, RNAi has become the cornerstone of gene function studies, shortening the otherwise long process of target identification and validation. In addition, small interfering RNA (siRNA) and short-hairpin RNA (shRNA) therapies are being developed for the treatment of a variety of human diseases. Despite its huge potential for gene silencing, a hurdle to safe and effective RNAi is the activation of innate immune responses. Induction of innate immunity is dose- and sequence-dependent, and is also influenced by target tissue and delivery vehicle. Research on the molecular mechanisms mediating this response is helping to improve the design of the RNAi molecules. Nevertheless, appropriate testing for the presence of this undesired effect is needed prior to making conclusions on the outcome of the silencing treatment.

Key words

RNA interference Short-hairpin RNA Gene transfer Animal models Interferon response Interferon-stimulated gene 

Notes

Acknowledgments

This research was supported by grants from the NIDDK (DK069432-01 and DK078595), American Diabetes Foundation (1-08-RA-135), and INGEN (Indiana Genomics Initiative of Indiana University supported in part by Lilly Endowment Inc.).

References

  1. 1.
    Sledz, C.A., Williams, B.R. (2004) RNA interference and double-stranded-RNA-activated pathways. Biochem. Soc. Trans. 32: 952–956.PubMedCrossRefGoogle Scholar
  2. 2.
    Sledz, C.A., Williams, B.R. (2005) RNA interference in biology and disease. Blood 106: 787–794.PubMedCrossRefGoogle Scholar
  3. 3.
    Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., Schreiber, R.D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67: 227–264.PubMedCrossRefGoogle Scholar
  4. 4.
    Li, G., Xiang, Y., Sabapathy, K., Silverman, R.H. (2004) An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase. J. Biol. Chem. 279: 1123–1131.PubMedCrossRefGoogle Scholar
  5. 5.
    Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738.PubMedCrossRefGoogle Scholar
  6. 6.
    Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., Reis e Sousa, C. (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529–1531.Google Scholar
  7. 7.
    Kariko, K., Bhuyan, P., Capodici, J., Weissman, D. (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172: 6545–6549.PubMedGoogle Scholar
  8. 8.
    Melchjorsen, J., Jensen, S.B., Malmgaard, L., et al. (2005) Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J. Virol. 79: 12944–12951.PubMedCrossRefGoogle Scholar
  9. 9.
    Barber, G.N. (2005) The dsRNA-dependent protein kinase, PKR and cell death. Cell Death Differ. 12: 563–570.PubMedCrossRefGoogle Scholar
  10. 10.
    Yoneyama, M., Kikuchi, M., Matsumoto, K., et al. (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175: 2851–2858.PubMedGoogle Scholar
  11. 11.
    Kato, H., Takeuchi, O., Sato, S., et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101–105.PubMedCrossRefGoogle Scholar
  12. 12.
    Hornung, V., Guenthner-Biller, M., Bourquin, C., et al. (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11: 263–270.PubMedCrossRefGoogle Scholar
  13. 13.
    Judge, A.D., Sood, V., Shaw, J.R., Fang, D., McClintock, K., MacLachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23: 457–462.PubMedCrossRefGoogle Scholar
  14. 14.
    Forsbach, A., Nemorin, J.G., Volp, K., et al. (2007) Characterization of conserved viral leader RNA sequences that stimulate innate immunity through TLRs. Oligonucleotides 17: 405–417.PubMedCrossRefGoogle Scholar
  15. 15.
    Forsbach, A., Nemorin, J.G., Montino, C., et al. (2008) Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J. Immunol. 180: 3729–3738.PubMedGoogle Scholar
  16. 16.
    Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.PubMedCrossRefGoogle Scholar
  17. 17.
    Brummelkamp, T.R., Bernards, R., Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.PubMedCrossRefGoogle Scholar
  18. 18.
    Sui, G., Soohoo, C., Affar el, B., Gay, F., Shi, Y., Forrester, W.C. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99: 55155520.Google Scholar
  19. 19.
    Arts, G.J., Langemeijer, E., Tissingh, R., et al. (2003) Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res. 13: 2325–2332.PubMedCrossRefGoogle Scholar
  20. 20.
    Lewis, D.L., Hagstrom, J.E., Loomis, A.G., Wolff, J.A., Herweijer, H. (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genet. 32: 107–108.PubMedCrossRefGoogle Scholar
  21. 21.
    McCaffrey, A.P., Meuse, L., Pham, T.T., Conklin, D.S., Hannon, G.J., Kay, M.A. (2002) RNA interference in adult mice. Nature 418: 38–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Xia, H., Mao, Q., Paulson, H.L., Davidson, B.L. (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20: 1006–1010.PubMedCrossRefGoogle Scholar
  23. 23.
    Hommel, J.D., Sears, R.M., Georgescu, D., Simmons, D.L., DiLeone, R.J. (2003) Local gene knockdown in the brain using viral-mediated RNA interference. Nat. Med. 9: 1539–1544.PubMedCrossRefGoogle Scholar
  24. 24.
    Kishida, T., Asada, H., Gojo, S., et al. (2004) Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA. J. Gene. Med. 6: 105–110.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuda, T., Cepko, C.L. (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl. Acad. Sci. USA 101: 16–22.Google Scholar
  26. 26.
    Witting, S.R., Brown, M., Saxena, R., Nabinger, S., Morral, N. (2008) Helper-dependent Adenovirus-mediated Short Hairpin RNA Expression in the Liver Activates the Interferon Response. J. Biol. Chem. 283: 2120–2128.PubMedCrossRefGoogle Scholar
  27. 27.
    Ruiz, R., Witting, S.R., Saxena, R., Morral, N. (2009) Robust hepatic gene silencing for functional studies using helper-dependent adenovirus vectors. Hum. Gene Ther. 20: 87–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L., Iggo, R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genet. 34: 263–264.PubMedCrossRefGoogle Scholar
  29. 29.
    Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H., Williams, B.R. (2003) Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5: 834–839.PubMedCrossRefGoogle Scholar
  30. 30.
    Fish, R.J., Kruithof, E.K. (2004) Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol. Biol. 5: 9.PubMedCrossRefGoogle Scholar
  31. 31.
    Pebernard, S., Iggo, R.D. (2004) Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72: 103–111.PubMedCrossRefGoogle Scholar
  32. 32.
    Gantier, M.P., Williams, B.R. (2007) The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev. 18: 363–371.PubMedCrossRefGoogle Scholar
  33. 33.
    Kenworthy, R., Lambert, D., Yang, F., et al. (2009) Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. Nucleic Acids Res. 37: 6587–6599.PubMedCrossRefGoogle Scholar
  34. 34.
    Judge, A.D., Bola, G., Lee, A.C., MacLachlan, I. (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13: 494–505.PubMedCrossRefGoogle Scholar
  35. 35.
    Hornung, V., Ellegast, J., Kim, S., et al. (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314: 994–997.PubMedCrossRefGoogle Scholar
  36. 36.
    Marques, J.T., Devosse, T., Wang, D., et al. (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat. Biotechnol. 24: 559–565.PubMedCrossRefGoogle Scholar
  37. 37.
    Pichlmair, A., Schulz, O., Tan, C.P., et al. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314: 997–1001.PubMedCrossRefGoogle Scholar
  38. 38.
    Malarkey, D.E., Johnson, K., Ryan, L., Boorman, G., Maronpot, R.R. (2005) New insights into functional aspects of liver morphology. Toxicol. Pathol. 33: 27–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Stratford-Perricaudet, L.D., Levrero, M., Chase, J.F., Perricaudet, M., Briand, P. (1990) Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum. Gene Ther. 1: 241–256.PubMedCrossRefGoogle Scholar
  40. 40.
    Morral, N., O’Neal, W.K., Rice, K., et al. (2002) Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum. Gene Ther. 13: 143–154.PubMedCrossRefGoogle Scholar
  41. 41.
    Inagaki, Y., Kushida, M., Higashi, K., et al. (2005) Cell type-specific intervention of transforming growth factor beta/Smad signaling suppresses collagen gene expression and hepatic fibrosis in mice. Gastroenterology 129: 259–268.PubMedCrossRefGoogle Scholar
  42. 42.
    Wheeler, M.D., Yamashina, S., Froh, M., Rusyn, I., Thurman, R.G. (2001) Adenoviral gene delivery can inactivate Kupffer cells: role of oxidants in NF-kappaB activation and cytokine production. J. Leukoc. Biol. 69: 622–630.PubMedGoogle Scholar
  43. 43.
    Manickan, E., Smith, J.S., Tian, J., et al. (2006) Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol. Ther. 13: 108–117.PubMedCrossRefGoogle Scholar
  44. 44.
    Nguyen, L.H., Espert, L., Mechti, N., Wilson, D.M., 3 rd. (2001) The human interferon- and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro. Biochemistry 40: 7174–7179.PubMedCrossRefGoogle Scholar
  45. 45.
    Zeng, Y., Wagner, E.J., Cullen, B.R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9: 1327–1333.PubMedCrossRefGoogle Scholar
  46. 46.
    Denti, M.A., Rosa, A., Sthandier, O., De Angelis, F.G., Bozzoni, I. (2004) A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol. Ther. 10: 191–199.PubMedCrossRefGoogle Scholar
  47. 47.
    Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., Conklin, D.S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16: 948–958.PubMedCrossRefGoogle Scholar
  48. 48.
    Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J., Elledge, S.J. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102: 13212–13217.PubMedCrossRefGoogle Scholar
  49. 49.
    Zeng, Y., Yi, R., Cullen, B.R. (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. Embo J. 24: 138–148.PubMedCrossRefGoogle Scholar
  50. 50.
    Zeng, Y., Cai, X., Cullen, B.R. (2005) Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol. 392: 371–380.PubMedCrossRefGoogle Scholar
  51. 51.
    Dentin, R., Benhamed, F., Hainault, I., et al. (2006) Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55: 2159–2170.PubMedCrossRefGoogle Scholar
  52. 52.
    Xu, H., Wilcox, D., Nguyen, P., et al. (2006) Hepatic knockdown of mitochondrial GPAT1 in ob/ob mice improves metabolic profile. Biochem. Biophys. Res. Commun. 349: 439–448.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen, C.C., Ko, T.M., Ma, H.I., et al. (2007) Long-term inhibition of hepatitis B virus in transgenic mice by double-stranded adeno-associated virus 8-delivered short hairpin RNA. Gene Ther. 14: 11–19.PubMedCrossRefGoogle Scholar
  54. 54.
    Huang, B., Schiefer, J., Sass, C., Landwehrmeyer, G.B., Kosinski, C.M., Kochanek, S. (2007) High-capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo. Hum. Gene Ther. 18: 303–311.PubMedCrossRefGoogle Scholar
  55. 55.
    Ohmori, T., Kashiwakura, Y., Ishiwata, A., Madoiwa, S., Mimuro, J., Sakata, Y. (2007) Silencing of a targeted protein in in vivo platelets using a lentiviral vector delivering short hairpin RNA sequence. Arterioscler. Thromb. Vasc. Biol. 27: 2266–2272.PubMedCrossRefGoogle Scholar
  56. 56.
    McManus, M.T., Petersen, C.P., Haines, B.B., Chen, J., Sharp, P.A. (2002) Gene silencing using micro-RNA designed hairpins. RNA 8: 842–850.PubMedCrossRefGoogle Scholar
  57. 57.
    Silva, J.M., Li, M.Z., Chang, K., et al. (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37: 1281–1288.PubMedGoogle Scholar
  58. 58.
    Robbins, M., Judge, A., MacLachlan, I. (2009) siRNA and innate immunity. Oligonucleotides 19: 89–102.PubMedCrossRefGoogle Scholar
  59. 59.
    Purdy, A.K., Campbell, K.S. (2010) Introduction of shRNAs into human NK-like cell lines with retrovirus. Methods Mol. Biol. 612: 223–231.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu, Y.P., von Eije, K.J., Schopman, N.C., et al. (2009) Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol. Ther. 17: 1712–1723.PubMedCrossRefGoogle Scholar
  61. 61.
    Georgievska, B., Jakobsson, J., Persson, E., Ericson, C., Kirik, D., Lundberg, C. (2004) Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum. Gene Ther. 15: 934–944.PubMedCrossRefGoogle Scholar
  62. 62.
    Makinen, P.I., Koponen, J.K., Karkkainen, A.M., et al. (2006) Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J. Gene Med. 8: 433–441.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen, Y., Lin, M.C., Yao, H., et al. (2007) Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. Hepatology 46: 200–208.PubMedCrossRefGoogle Scholar
  64. 64.
    Couturier, C., Sarkis, C., Seron, K., et al. (2007) Silencing of OB-RGRP in mouse hypothalamic arcuate nucleus increases leptin receptor signaling and prevents diet-induced obesity. Proc. Natl. Acad. Sci. USA 104: 19476–19481.PubMedCrossRefGoogle Scholar
  65. 65.
    Bot, I., Guo, J., Van Eck, M., et al. (2005) Lentiviral shRNA silencing of murine bone marrow cell CCR2 leads to persistent knockdown of CCR2 function in vivo. Blood 106: 1147–1153.PubMedCrossRefGoogle Scholar
  66. 66.
    Taniguchi, C.M., Ueki, K., Kahn, R. (2005) Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J. Clin. Invest. 115: 718–727.PubMedGoogle Scholar
  67. 67.
    Narvaiza, I., Aparicio, O., Vera, M., et al. (2006) Effect of adenovirus-mediated RNA interference on endogenous microRNAs in a mouse model of multidrug resistance protein 2 gene silencing. J. Virol. 80: 12236–12247.PubMedCrossRefGoogle Scholar
  68. 68.
    Sakamoto, N., Tanabe, Y., Yokota, T., et al. (2008) Inhibition of hepatitis C virus infection and expression in vitro and in vivo by recombinant adenovirus expressing short hairpin RNA. J. Gastroenterol. Hepatol. 23: 1437–1447.PubMedCrossRefGoogle Scholar
  69. 69.
    Lu, S., Cullen, B.R.. (2004) Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J. Virol. 78: 12868–12876.PubMedCrossRefGoogle Scholar
  70. 70.
    Morral, N., Parks, R., Zhou, H., et al. (1998) High doses of a helper-dependent adenoviral vector yield supraphysiological levels of a1-antitrypsin with negligible toxicity. Hum. Gene Ther. 9: 2709–2716.PubMedCrossRefGoogle Scholar
  71. 71.
    Morsy, M.A., Gu, M.C., Motzel, S., et al. (1998) An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc. Natl. Acad. Sci. USA 95: 7866–7871.PubMedCrossRefGoogle Scholar
  72. 72.
    Schiedner, G., Morral, N., Parks, R., et al. (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nature Genet. 18: 180–183.PubMedCrossRefGoogle Scholar
  73. 73.
    Thomas, C.E;, Schiedner, G., Kochanek, S., Castro, M.G., Lowenstein, P.R. (2000) Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc. Natl. Acad. Sci. USA 97: 7482–7487.PubMedCrossRefGoogle Scholar
  74. 74.
    Zou, L., Yuan, X., Zhou, H., Lu, H., Yang, K. (2001) Helper-dependent adenoviral vector-mediated gene transfer in aged rat brain. Hum. Gene Ther. 12: 181–191.PubMedCrossRefGoogle Scholar
  75. 75.
    Xiong, W., Goverdhana, S., Sciascia, S.A., et al. (2006) Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J. Virol. 80: 27–37.PubMedCrossRefGoogle Scholar
  76. 76.
    Clemens, P.R., Kochanek, S., Sunada, Y., et al. (1996) In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther. 3: 965–972.PubMedGoogle Scholar
  77. 77.
    Dudley, R.W., Lu, Y., Gilbert, R., et al. (2004) Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum. Gene Ther. 15: 145–156.PubMedCrossRefGoogle Scholar
  78. 78.
    Toietta, G., Koehler, D.R., Finegold, M.J., Lee, B., Hu, J., Beaudet, A.L. (2003) Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter. Mol. Ther. 7: 649–658.PubMedCrossRefGoogle Scholar
  79. 79.
    Carter, B.J. (2005) Adeno-associated virus vectors in clinical trials. Hum. Gene Ther. 16: 541–550.PubMedCrossRefGoogle Scholar
  80. 80.
    Wu, Z., Asokan, A., Samulski, R.J. (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14: 316–327.PubMedCrossRefGoogle Scholar
  81. 81.
    Carter, B.J. (2003) Gene delivery technology: adeno-associated virus. In Pharmaceutical gene delivery systems (S.M. Rolland AaS Ed.), Marcel Dekker, Inc., New York pp. 183–213.Google Scholar
  82. 82.
    Wang, X., Skelley, L., Cade, R., Sun, Z. (2006) AAV delivery of mineralocorticoid receptor shRNA prevents progression of cold-induced hypertension and attenuates renal damage. Gene Ther. 13: 1097–1103.PubMedCrossRefGoogle Scholar
  83. 83.
    Paskowitz, D.M., Greenberg, K.P., Yasumura, D., et al. (2007) Rapid and stable knockdown of an endogenous gene in retinal pigment epithelium. Hum. Gene Ther. 18: 871–880.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang, W., Patil, S., Chauhan, B., et al. (2006) FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281: 10105–10117.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medical and Molecular Genetics, and Center for Diabetes ResearchIndiana University School of MedicineIndianapolisUSA

Personalised recommendations