Skip to main content

Isolation of Fetal Gonads from Embryos of Timed-Pregnant Mice for Morphological and Molecular Studies

  • Protocol
  • First Online:
Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 825))

Abstract

Gonadal sex differentiation is an important developmental process, in which a bipotential primordial gonad undergoes two distinct pathways, i.e., testicular and ovarian differentiation, dependent on its genetic sex. Techniques of isolating fetal gonads at various developmental stages are valuable for studies on the molecular events involved in cell-fate determination, sex-specific somatic and germ-cell differentiation and structural organization. Here we describe various procedures for isolation of embryonic gonads at different developmental stages from embryos of timed-pregnant mice. The isolated fetal gonads can be used for a variety of studies, such as organ culture, gene and protein expression. As examples of applications, we describe the immunofluorescence detection of SOX9 expression in gonadal tissue sections and microRNAs profiling/expression in fetal gonads at a critical stage for sex determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal development in mammals. Physiol Rev 87, 1–28.

    Article  PubMed  CAS  Google Scholar 

  2. Sekido R, Lovell-Badge R (2009) Sex determination and SRY: down to a wink and a nudge? Trends Genet 25, 19–29.

    Article  PubMed  CAS  Google Scholar 

  3. Taketo T, Lee CH, Zhang J, Li Y, Lee CY, Lau YF (2005) Expression of SRY proteins in both normal and sex-reversed XY fetal mouse gonads. Dev Dyn 233, 612–622.

    Article  PubMed  CAS  Google Scholar 

  4. Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453, 930–934.

    Article  PubMed  CAS  Google Scholar 

  5. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121.

    Article  PubMed  CAS  Google Scholar 

  6. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, Yoshitome A, Yamawaki K, Amagai M, Inoue A, Oshima T, Kakitani M (2008) R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17, 1278–1291.

    Article  PubMed  CAS  Google Scholar 

  7. Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R, Capel B (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4, e187.

    Article  PubMed  Google Scholar 

  8. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter, NI, Riethmacher D, Schutz G, Cooney AJ, Lovell-Badge R, Treier M (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142.

    Article  PubMed  CAS  Google Scholar 

  9. Taketo TTR, Adeyemo O, Koide SS (1984) Influence of adenosine 3′,5′-cyclic monophosphate analogs on testicular organizaion of fetal mouse gonads in virtro. Biol Reprod 30, 189–198.

    Article  PubMed  CAS  Google Scholar 

  10. Capel B, Batchvarov J (2008) Preparing Recombinant Gonad Organ Cultures. Cold Spring Harb Protoc

    Google Scholar 

  11. Li Y, Yue L, Taketo T, Lau YF (2003) Protein transduction as a strategy for evaluating important factors in mammalian sex determination and differentiation. Cytogenet Genome Res 101, 237–241.

    Article  PubMed  CAS  Google Scholar 

  12. Capel B, Albrecht KH, Washburn LL, Eicher EM (1999) Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84, 127–131.

    Article  PubMed  CAS  Google Scholar 

  13. Nef S, Schaad O, Stallings NR, Cederroth CR, Pitetti JL, Schaer G, Malki S, Dubois-Dauphin M, Boizet-Bonhoure B, Descombes P, Parker KL, Vassalli JD (2005) Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 287, 361–377.

    Article  PubMed  CAS  Google Scholar 

  14. Beverdam A, Koopman P (2006) Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum Mol Genet 15, 417–431.

    Article  PubMed  CAS  Google Scholar 

  15. Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T (2000) Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 93, 139–149.

    Article  PubMed  CAS  Google Scholar 

  16. Shah AA, Meese E, Blin N (2010) Profiling of regulatory microRNA transcriptomes in various biological processes: a review. J Appl Genet 51, 501–507.

    Article  PubMed  CAS  Google Scholar 

  17. Kim GJ, Georg I, Scherthan H, Merkenschlager M, Guillou F, Scherer G, Barrionuevo F (2010) Dicer is required for Sertoli cell function and survival. Int J Dev Biol 54, 867–875.

    Article  PubMed  CAS  Google Scholar 

  18. Bannister SC, Tizard ML, Doran TJ, Sinclair AH, Smith CA (2009) Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biol Reprod 81, 165–176.

    Article  PubMed  CAS  Google Scholar 

  19. O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12, 201.

    Article  PubMed  Google Scholar 

  20. Liu L, Chen L, Xu Y, Li R, Du X (2010) microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun 400, 236–240.

    Article  PubMed  CAS  Google Scholar 

  21. Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B (2008) MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res 36, 6318–6332.

    Article  PubMed  CAS  Google Scholar 

  22. Giraud-Triboult K, Rochon-Beaucourt C, Nissan X, Champon B, Aubert S, Pietu G (2011) Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b control human mesenchymal stem cell phenotype via EPAS1. Physiol Genomics 43,77–86.

    Article  PubMed  CAS  Google Scholar 

  23. Castilla MA, Moreno-Bueno G, Romero-Perez L, De Vijver KV, Biscuola M, Lopez-Garcia MA, Prat J, Matias-Guiu X, Cano A, Oliva E, Palacios J (2011) Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 223, 72–80.

    Article  PubMed  CAS  Google Scholar 

  24. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39, 761–772.

    Article  PubMed  CAS  Google Scholar 

  25. Jung YH, Gupta MK, Shin JY, Uhm SJ, Lee HT (2010) MicroRNA signature in testes-derived male germ-line stem cells. Mol Hum Reprod 16, 804–810.

    Article  PubMed  CAS  Google Scholar 

  26. Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119, 2772–2786.

    Article  PubMed  CAS  Google Scholar 

  27. van Rooij E, Quiat, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17, 662–673.

    Article  PubMed  Google Scholar 

  28. Bouma GJ, Washburn LL, Albrecht KH, Eicher EM (2007) Correct dosage of Fog2 and Gata4 transcription factors is critical for fetal testis development in mice. Proc Natl Acad Sci USA 104, 14994–14999.

    Article  PubMed  CAS  Google Scholar 

  29. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12, 399–408.

    Article  PubMed  CAS  Google Scholar 

  30. Gao FB (2010) Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 5, 25.

    Article  PubMed  Google Scholar 

  31. Farrell BC, Power EM, Dermott KW (2011) Developmentally regulated expression of Sox9 and microRNAs 124,128 and 23 in neuroepithelial stem cells in the developing spinal cord. Int J Dev Neurosci 29, 31–36.

    Article  PubMed  CAS  Google Scholar 

  32. Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M (2009) Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 223, 49–56.

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by an NIH grant to Y-FC Lau. Y-FC Lau is a Research Career Scientist in the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Fai Chris Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, Y., Taketo, T., Lau, YF.C. (2012). Isolation of Fetal Gonads from Embryos of Timed-Pregnant Mice for Morphological and Molecular Studies. In: Chan, WY., Blomberg, L. (eds) Germline Development. Methods in Molecular Biology, vol 825. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-436-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-436-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-435-3

  • Online ISBN: 978-1-61779-436-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics