Skip to main content

Super-promoter:TEV, a Powerful Gene Expression System for Tobacco Hairy Roots

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 824))

Abstract

In order to identify a promoter system for high-level expression of transgenes in hairy roots, we characterized the chimeric super-promoter fused to the translational enhancer from tobacco etch virus (TEV). Transgenic tobacco plants and hairy roots were generated with the super-promoter:TEV sequence and a modified green fluorescence protein (mGFP5) as a reporter gene. To exploit the utility of hairy root cultures as a secretion-based expression system, the signal peptide of patatin was fused to mGFP5 to direct its secretion into the culture medium. Levels of mGFP5 RNA were on average sixfold higher in hairy roots than leaves. Likewise, GFP protein levels per gram of fresh weight were at least tenfold higher in hairy roots than leaves. Furthermore, more than 10% of the recombinant protein produced in the hairy root culture system was found in the medium. Immunoblotting with anti-GFP antibodies showed two products of 27.1 and 29.9 kDa in all leaf and hairy root tissue extracts, whereas a single 27.1-kDa product was detected in the medium. Inducibility of the promoter was studied with mature leaves and 14-day (midlog phase) hairy roots. A twofold increase in mRNA levels was found immediately after wounding in both mature leaves and hairy roots, with a corresponding increase in mGFP5 protein after 24 h. Our studies demonstrate the utility of the super-promoter:TEV system for high-level expression of recombinant proteins in hairy root bioreactors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wildi, E., Wildi, R., and Ripplinger, P. (2004) Device for cultivating plant or animal tissue cultures. US Patent 6, 794–183.

    Google Scholar 

  2. Guillon, S., Trémouillaux-Guiller, J., Pati, P. K., Rideau, M., and Gantet, P. (2006) Harnessing the potential of hairy roots: dawn of a new era. TRENDS Biotechnol. 24, 403–409.

    Article  PubMed  CAS  Google Scholar 

  3. Liu, J., Dolan, M., Reidy, M., Cramer, C. (2008) Expression of bioactive single-chain murine IL-12 in transgenic plants. J. Interferon Cytokine Res. 28, 381–92.

    Article  PubMed  CAS  Google Scholar 

  4. Medina-Bolivar, F., Wright, R., Funk, V., Sentz, D., Barroso, L., Wilkins, T. D., Petri, W. Jr., and Cramer, C. L. (2003) A non-toxic lectin for antigen delivery of plant-based mucosal vaccines. Vaccine 21 997–1005.

    Article  PubMed  CAS  Google Scholar 

  5. Ni, M., Cui, D., Einstein, J., Narasimhulu, S., Vergara, C. E., and Gelvin, S. B. (1995) Strength and tissue specificity of chimeric ­promoters derived from the octopine and ­mannopine synthase genes. Plant J. 7 661–676.

    Article  CAS  Google Scholar 

  6. Leisner, S. M., and Gelvin, S. B. (1988) Structure of the octopine synthase upstream activator sequence. Proc. Natl. Acad. Sci. USA 85 2553–2557.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis, J. G., Ryder, M. H., and Tate, M. E. (1984) Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol. Gen. Genet. 195, 466–473.

    Article  CAS  Google Scholar 

  8. Lee, L. Y., Kononov, M., Bassuner, B., Frame, B. R., Wang, K., and Gelvin, S. B. (2007) Novel plant transformation vectors containing the super-promoter. Plant Physiol. 145 1294–1300.

    Article  PubMed  CAS  Google Scholar 

  9. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res 27, 297–300. http://www.dna.affrc.go.jp/PLACE/. Accessed 05 Feb 2007.

  10. Ellis, J. G., Llewellyn, D. J., Walker, J. C., Dennis, E. S., and Peacock W. J. (1987) The ocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer. EMBO J. 6 3203–3208.

    PubMed  CAS  Google Scholar 

  11. Singh, K., Tokuhisa, J. G., Dennis, E. S., and Peacock, W. J. (1989) Saturation mutagenesis of the octopine synthase enhancer: correlation of mutant phenotypes with binding of a nuclear protein factor. Proc. Natl. Acad. Sci. USA 86 3733–3737.

    Article  PubMed  CAS  Google Scholar 

  12. Fromm, H., Katagiri, F., and Chua, N. H. (1989) An octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts. Plant Cell 1 977–984.

    PubMed  CAS  Google Scholar 

  13. Guevara-García, A., López-Ochoa, L., López-Bucio, J., Simpson, J., and Herrera-Estrella, L. (1998) A 42 bp fragment of the pmas1’ promoter containing an ocs-like element confers a developmental, wound- and chemically inducible expression pattern. Plant Mol. Biol. 38 743–753.

    Article  PubMed  Google Scholar 

  14. Guevara-García, A., Mosqueda-Cano, G., Argüello-Astorga, G., Simpson, J., and Herrera-Estrella, L. (1993) Tissue-specific and wound-inducible pattern of expression of the mannopine synthase promoter is determined by the interaction between positive and negative cis-­regulatory elements. Plant J. 4 495–505.

    Article  PubMed  Google Scholar 

  15. Shen, W. H., Davioud, E., David, C., Barbier-Brygoo, H., Tempé. J., and Guern, J. (1990) High sensitivity to auxin is a common feature of hairy root. Plant. Physiol. 94 554–560.

    Article  PubMed  CAS  Google Scholar 

  16. Carrington, J. C., and Freed, D. D. (1990) Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J. Virology 64 1590–1597.

    PubMed  CAS  Google Scholar 

  17. Carrington, J. C., Freed, D. D., and Leinicke, A. J. (1991) Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. The Plant Cell 3 953–962.

    PubMed  CAS  Google Scholar 

  18. Mason,H. S.,Ball,J. M.,Shi,J. J.,Jiang, X.,Estes,M. K.,Arntzen,C. J. (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA 93 5335–5340.

    Article  PubMed  CAS  Google Scholar 

  19. Denecke, J., Botterman, J., and Deblaere, R. (1990) Protein secretion in plant cells can occur via a default pathway. The Plant Cell 2 51–59.

    PubMed  CAS  Google Scholar 

  20. Medina-Bolivar, F., and Cramer, C. (2004) Production of recombinant proteins in hairy roots cultured in plastic sleeve bioreactors In: P. Balbas and A. Lorence (eds) Recombinant Gene Expression: Reviews and Protocols, Humana Press, Totowa, pp. 351–363.

    Google Scholar 

  21. Gamborg, O., Miller, R. A., and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Rep. 50151–158.

    Article  CAS  Google Scholar 

  22. Holsters, M., de Waele, D., Depicker, A., Messens, E., van Montagu, M., and Schell, J. (1978) Transfection and transformation of A. tumefaciens. Mol. Gen. Genet. 163 181–187.

    Article  PubMed  CAS  Google Scholar 

  23. Richards, H. A., Halfhill, M. D., Millwood, R. J., and Stewart, C. N. Jr. (2003) Quantitative mGFP5 fluorescence as an indicator of recombinant protein synthesis in transgenic plants. Plant Cell Rep. 22 117–121.

    Article  PubMed  CAS  Google Scholar 

  24. Shadwick, F. S., and Doran, P. M. (2007) Propagation of plant viruses in hairy root cultures: A potential method for in vitro production of epitope vaccines and foreign proteins. Biotechnol. Bioeng. 96 570–583.

    Article  PubMed  CAS  Google Scholar 

  25. Sharp, J. M., and Doran, P. M. (2001) Characterization of monoclonal antibody fragments produced by plant cells. Biotechnolog. Bioeng. 73 338–346.

    Article  CAS  Google Scholar 

  26. Köhle, A., Sommer, S., Yazaki, K., Ferrer, A., Boronat, A., Li, S. M., and Heide, L. (2002) High level expression of chorismate pyruvate-lyase (UbiC) and HMG-CoA reductase in hairy root cultures of Lithospermum erythrorhizon. Plant Cell. Physiol. 43 894–902.

    Article  PubMed  Google Scholar 

  27. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340 783–795 http://www.cbs.dtu.dk/services/SignalP. Accessed 05 Feb 2007.

  28. Nielsen, H., and Krogh, A. (1998) Prediction of signal peptides and signal anchors by a ­hidden Markov model. Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 6), AAAI Press, Menlo Park, California, pp. 122–130. http://www.cbs.dtu.dk/services/SignalP. Accessed 05 Feb 2007.

  29. Mignery, G. A., Pikaard, C. S., Hannapel, D. J., Park, W. D. (1984) Isolation and sequence analysis of cDNAs for the major potato tuber protein, patatin. Nucleic Acids Res. 12 7987–8000.

    Article  PubMed  CAS  Google Scholar 

  30. Nishiuchi, T., Shinshi, H., and Suzuki, K. (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: Possible involvement of NtWRKYs and autorepression. J. Biol. Chem. 279 55355–55361.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Gastón Zolla for his assistance with some of the assays, and also to the members of our laboratories at the Virginia Polytechnic Institute and State University (Blacksburg, VA) and at the Arkansas Biosciences Institute at the Arkansas State University (Jonesboro, AR) for their contributions at different stages of this work. This research was supported by the State of Virginia Commonwealth Technological Research Fund and the Arkansas Biosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Medina-Bolivar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ñopo, L., Woffenden, B.J., Reed, D.G., Buswell, S., Zhang, C., Medina-Bolivar, F. (2012). Super-promoter:TEV, a Powerful Gene Expression System for Tobacco Hairy Roots. In: Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 824. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-433-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-433-9_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-432-2

  • Online ISBN: 978-1-61779-433-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics