Skip to main content

Recombinant Protein Production in Plants: Challenges and Solutions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 824))

Abstract

In a recent presentation at the 2010 International Association for Plant Biotechnology meeting, Dr. Richard Flavell (Ceres, Malibu, CA, USA) motivated the plant community to act quickly and with purpose to move a multitude of traits into crop plants to improve their productivity. Current progress toward understanding of plants is too slow and will not achieve our communal goal of doubling agricultural productivity by 2050. Major breakthroughs are necessary! Thus, high-throughput methods that couple gene identification and phenotype observations are required to put potential products into the hands of plant breeders to make varieties with good agronomic characteristics that will be approved by the regulatory agencies. These first improved crops must be on the market in the next 10 years, according to Flavell, in order to begin to meet our doubled productivity goals in 30 years. Because it takes approximately 10 years to produce a characterized variety from an identified gene and move it through product development and regulatory approval, we must begin now. Presumably, by employing the techniques in the following ­chapters, we can do that.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ma, J. K.-C., Drake, P., and Christou, P. (2003) The production of recombinant pharmaceutical proteins in plants, Nature Reviews Genetics 4, 794–805.

    Article  PubMed  CAS  Google Scholar 

  2. Hood, E., Witcher, D., Maddock, S., Meyer, T., Baszczynski, C., and al, e. (1997) Commercial production of avinid from transgenetic maize: characterization of transformant, production, processing, extracting, and purification, Molecular Breeding 3, 291–306.

    Google Scholar 

  3. Howard, J., Nikolov, Z., and Hood, E. (2011) Enzyme production systems for biomass conversion, In Plant Biomass Conversion (Hood, E., Nelson, P., and Powell, R., Eds.), Wiley-Blackwell, Ames, IA, pp. 227–253.

    Google Scholar 

  4. Streatfield, S. (2007) Approaches to achieve high-level heterologous protein production in plants, Plant Biotechnology Journal 5, 2–15.

    Article  PubMed  CAS  Google Scholar 

  5. Schillberg, S., Twyman, R., and Fischer, R. (2005) Opportunities for recombinant antigen and antibody expression in transgenic plants-technology assessment, Vaccine 23, 1764–1769.

    Article  PubMed  CAS  Google Scholar 

  6. Odell, J., Nagy, F., and Chua, N. (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35 S promoter, Nature 313, 810–812.

    Article  PubMed  CAS  Google Scholar 

  7. Christensen, A., Sharrock, R., and Quail, P. (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation, Plant Molecular Biology 18, 810–812.

    Article  Google Scholar 

  8. Shaw, C., Carter, G., Watson, M., and Shaw, C. (1984) A functional map of the nopaline synthase promoter, Nucleic Acids Research 12, 7831–7846.

    Article  PubMed  CAS  Google Scholar 

  9. Stoger, E., Sack, M., Perrin, Y., Vaquero, C., Torres, E., and et al., (2002) Practical considerations for pharmaceutical antibody production in different crop systems, Molecular Breeding 9, 149–158.

    Google Scholar 

  10. Beaudoing, E., and Gautheret, D. (2001) Identification of Alternate Polyadenylation Sites and Analysis of their Tissue Distribution Using EST data, Genome Research 11, 1520–1526.

    Article  PubMed  CAS  Google Scholar 

  11. Rose, A., and Beliakoff, J. (2000) Intron-mediated Enhancement of Gene Expression Independent of Unique Intron Sequences and Splicing, Plant Physiology 122, 535–542.

    Article  PubMed  CAS  Google Scholar 

  12. Kusnadi, A. R., Nikolov, Z. L., and Howard, J. A. (1997) Production of recombinant proteins in transgenic plants: Practical considerations, Biotechnology and Bioengineering 56, 473–484.

    Article  PubMed  CAS  Google Scholar 

  13. Rose, A. (2004) The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis, The Plant Journal 40, 744–751.

    Article  PubMed  CAS  Google Scholar 

  14. Maquat, L. E. (2004) Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics, Nature Reviews Molecular Cell Biology 5, 89–99.

    Article  PubMed  CAS  Google Scholar 

  15. Mori, M., Fujihara, N., Mise, K., and Furusawa, I. (2001) Inducible high-level mRNA amplification system by viral replicase in transgenic plants, Plant Journal 27, 79–86.

    Article  PubMed  CAS  Google Scholar 

  16. Canizares, M. C., Nicholson, L., and Lomonossoff, G. P. (2005) Use of viral vectors for vaccine production in plants, Immunology and Cell Biology 83, 263–270.

    Article  PubMed  CAS  Google Scholar 

  17. Streatfield, S. J. (2005) Oral hepatitis B vaccine candidates produced and delivered in plant material, Immunology and Cell Biology 83, 257–262.

    Article  PubMed  CAS  Google Scholar 

  18. Hefferon, K. L., and Ying, F. (2004) Expression of a vaccine protein in a plant cell line using a geminivirus-based replicon system, Vaccine 23, 404–410.

    Article  PubMed  CAS  Google Scholar 

  19. Lau, O., and Sun, S. (2009) Plant seeds as bioreactors for recombinant protein production, Biotechnology Advances 27, 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  20. Desai, P., Shrivastava, N., and Padh, H. (2010) Production of heterologous proteins in plants: Strategies for optimal expression, Biotechology Advances 28, 427–435.

    Article  CAS  Google Scholar 

  21. Gil, F., Titarenko, E., Terrada, E., Arcalis, E., and Escribano, J. M. (2006) Successful oral prime-immunization with VP60 from rabbit haemorrhagic disease virus produced in transgenic plants using different fusion strategies, Plant Biotechnology Journal 4, 135–143.

    Article  PubMed  CAS  Google Scholar 

  22. Dai, Z., Hooker, B., Anderson, D., and Thomas, S. (2000) Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting, Molecular breeding 6, 277–285.

    Article  CAS  Google Scholar 

  23. Daniell, H., Kumar, S., and Dufourmantel, N. (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops, Trends in Biotechnology 23, 238–245.

    Article  PubMed  CAS  Google Scholar 

  24. Doran, P. M. (2006) Foreign protein degradation and instability in plants and plant tissue cultures, Trends in Biotechnology 24, 426–432.

    Article  PubMed  CAS  Google Scholar 

  25. Ulker, B., Allen, G. C., Thompson, W. F., Spiker, S., and Weissinger, A. K. (1999) A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plants, Plant Journal 18, 253–263.

    Article  CAS  Google Scholar 

  26. Hood, E. E., Bailey, M. R., Beifuss, K., Magallanes-Lundback, M., Horn, M. E., Callaway, E., Drees, C., Delaney, D. E., Clough, R., and Howard, J. A. (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize, Plant Biotechnol J 1, 129–140.

    Article  PubMed  CAS  Google Scholar 

  27. Young, T. E., Giesler-Lee, J., and Gallie, D. R. (2004) Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development, Plant Journal 38, 910–922.

    Article  PubMed  CAS  Google Scholar 

  28. Nuttall, J., Vine, N., Hadlington, J. L., Drake, P., Frigerio, L., and Ma, J. K. C. (2002) ER-resident chaperone interactions with recombinant antibodies in transgenic plants, European Journal of Biochemistry 269, 6042–6051.

    Article  PubMed  CAS  Google Scholar 

  29. Stoger, E., Ma, J. K. C., Fischer, R., and Christou, P. (2005) Sowing the seeds of success: pharmaceutical proteins from plants, Current Opinion in Biotechnology 16, 167–173.

    Article  PubMed  CAS  Google Scholar 

  30. Streatfield, S. J., and Howard, J. A. (2003) Plant-based vaccines, International Journal for Parasitology 33, 479–493.

    Article  PubMed  CAS  Google Scholar 

  31. Sweeney, P. (2002) A Warehouse of Ideas; Developing and Using Intellectual Property, In Plants as Factories for Protein Production (Hood, E., and Hward, J., Eds.), pp 181–206, Kluwer Academic Pub.

    Google Scholar 

  32. OECD. (1993) Safety Evaluation of Foods Derived by Modern Biotechnology; Concepts and Principles, pp 1–77, Organization for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  33. Huson, D., Richter, D., Mitra, S., Auch, A., and Schuster, S. (2009) Methods for comparative metagenomics, BMC Bioinformatics 10, S12.

    Article  PubMed  Google Scholar 

  34. Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone, C., Jones, R., Robeson, M., Edwards, R. A., Felts, B., Rayhawk, S., Knight, R., Rohwer, F., and Jackson, R. B. (2007) Metagenomic and Small-Subunit rRNA Analyses Reveal the Genetic Diversity of Bacteria, Archaea, Fungi, and Viruses in Soil, Appl. Environ. Microbiol. 73, 7059–7066.

    Article  PubMed  CAS  Google Scholar 

  35. Daniel, R. (2005) The metagenomics of soil, Nat Rev Micro 3, 470–478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth E. Hood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hood, E.E., Requesens, D.V.V. (2012). Recombinant Protein Production in Plants: Challenges and Solutions. In: Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 824. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-433-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-433-9_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-432-2

  • Online ISBN: 978-1-61779-433-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics