Skip to main content

MicroRNA In Situ Hybridization

  • Protocol
  • First Online:
Next-Generation MicroRNA Expression Profiling Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 822))

Abstract

In situ hybridization (ISH) is a technology that allows detection of specific nucleic acid sequences in tissue samples at the cellular level. For detection of individual microRNAs (miRNAs) and mRNAs, the ISH technology determines the cellular origin of expression and provides information on expression levels in different tissue compartments and cell populations. This histological expression analysis is of crucial importance for elucidating roles particularly of miRNAs in molecular and biological processes. mRNA expression analyses can partly be replaced by immunohistochemical detection of the protein encoded by the mRNA. Combined with the short sequences of the miRNAs (18–22 bp), this leaves miRNA ISH as an indispensable yet challenging technology in terms of detection and specificity analysis. In this chapter, a simple miRNA ISH protocol using chromogenic detection is presented. I touch upon critical steps in the ISH protocol, different applications on ISH technology platforms, advantageous use of locked nucleic acids (LNA™) in miRNA detection probes, qualification of clinical paraffin samples, and specificity analyses and quantification of the ISH signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nuovo, G.J. (2008) In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods 44, 39–46.

    Article  PubMed  CAS  Google Scholar 

  2. Jorgensen, S., Baker A., Moller S., and Nielsen B.S. (2010) Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52, 375–81.

    Article  PubMed  CAS  Google Scholar 

  3. Sempere, L.F., Preis M., Yezefski T., Ouyang H., Suriawinata A.A., Silahtaroglu A., et al. (2010) Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors. Clin Cancer Res 16, 4246–55.

    Article  PubMed  CAS  Google Scholar 

  4. Obernosterer, G., Martinez J., and Alenius M. (2007) Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2, 1508–14.

    Article  PubMed  CAS  Google Scholar 

  5. Silahtaroglu, A.N., Nolting D., Dyrskjot L., Berezikov E., Moller M., Tommerup N., et al. (2007) Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc 2, 2520–8.

    Article  PubMed  CAS  Google Scholar 

  6. Thompson, R.C., Deo M., and Turner D.L. (2007) Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes. Methods 43, 153–61.

    Article  PubMed  CAS  Google Scholar 

  7. Pena, J.T., Sohn-Lee C., Rouhanifard S.H., Ludwig J., Hafner M., Mihailovic A., et al. (2009) miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 6, 139–41.

    Article  PubMed  CAS  Google Scholar 

  8. Kloosterman, W.P., Wienholds E., de Bruijn, E., Kauppinen S., and Plasterk R.H. (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3, 27–9.

    Google Scholar 

  9. Pearson, B.J., Eisenhoffer G.T., Gurley K.A., Rink J.C., Miller D.E., and Sanchez A.A. (2009) Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev Dyn 238, 443–50.

    Article  PubMed  Google Scholar 

  10. Lu, J., Tsourkas A. (2009) Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res 37, e100.

    Article  PubMed  Google Scholar 

  11. Nuovo, G., Lee E.J., Lawler S., Godlewski J., and Schmittgen T. (2009) In situ detection of mature microRNAs by labeled extension on ultramer templates. Biotechniques 46, 115–26.

    Article  PubMed  CAS  Google Scholar 

  12. You, Y., Moreira B.G., Behlke M.A., and Owczarzy R. (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res 34, e60.

    Article  PubMed  Google Scholar 

  13. Christodoulou, F., Raible F., Tomer R., Simakov O., Trachana K., Klaus S., et al. (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463, 1084–8.

    Article  PubMed  CAS  Google Scholar 

  14. Nielsen, B.S., Jorgensen S., Fog J.U., Sokilde R., Christensen I.J., Hansen U., et al. (2011) High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28, 27–38.

    Article  PubMed  CAS  Google Scholar 

  15. de Planell-Saguer, M., Rodicio M.C., and Mourelatos Z. (2010) Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat Protoc 5, 1061–73.

    Article  PubMed  Google Scholar 

  16. Maiorano, N.A., Mallamaci A. (2009) Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Dev 4, 40.

    Article  PubMed  Google Scholar 

  17. Larsson, E., Fredlund F.P., Heldin J., Barkefors I., Bondjers C., Genove G., et al. (2009) Discovery of microvascular miRNAs using public gene expression data: miR-145 is expressed in pericytes and is a regulator of Fli1. Genome Med 1, 108.

    Article  PubMed  Google Scholar 

  18. Nelson, P.T., Dimayuga J., and Wilfred B.R. (2010) MicroRNA in Situ Hybridization in the Human Entorhinal and Transentorhinal Cortex. Front Hum Neurosci 4, 7.

    Article  PubMed  Google Scholar 

  19. Nielsen, B.S., Rank F., Illemann M., Lund L.R., and Dano K. (2007) Stromal cells associated with early invasive foci in human mammary ductal carcinoma in situ coexpress urokinase and urokinase receptor. Int J Cancer 120, 2086–95.

    Article  PubMed  CAS  Google Scholar 

  20. Yamamichi, N., Shimomura R., Inada K., Sakurai K., Haraguchi T., Ozaki Y., et al. (2009) Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res 15, 4009–16.

    Article  PubMed  CAS  Google Scholar 

  21. Wei, T., Orfanidis K., Xu N., Janson P., Stahle M., Pivarcsi A., et al. (2010) The expression of microRNA-203 during human skin morphogenesis. Exp Dermatol 19, 854–6.

    Article  PubMed  CAS  Google Scholar 

  22. Hoesel, B., Bhujabal Z., Przemeck G.K., Kurz-Drexler A., Weisenhorn D.M., Angelis M.H., et al. (2010) Combination of in silico and insitu hybridisation approaches to identify potential Dll1 associated miRNAs during mouse embryogenesis. Gene Expr Patterns 10, 265–73.

    Article  PubMed  CAS  Google Scholar 

  23. Nuovo, G.J. (2010) In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. Methods 52, 307–15.

    Article  PubMed  CAS  Google Scholar 

  24. Mansfield, J.R. (2010) Cellular context in epigenetics: quantitative multicolor imaging and automated per-cell analysis of miRNAs and their putative targets. Methods 52, 271–80.

    Article  PubMed  CAS  Google Scholar 

  25. Dillhoff, M., Liu J., Frankel W., Croce C., and Bloomston M. (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 12, 2171–6.

    Article  PubMed  Google Scholar 

  26. Nielsen, C.B., Singh S.K., Wengel J., and Jacobsen J.P. (1999) The solution structure of a locked nucleic acid (LNA) hybridized to DNA. J Biomol Struct Dyn 17, 175–91.

    PubMed  CAS  Google Scholar 

  27. Petersen, M., Bondensgaard K., Wengel J., and Jacobsen J.P. (2002) Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA:RNA hybrids. J Am Chem Soc 124, 5974–82.

    Article  PubMed  CAS  Google Scholar 

  28. Neely, L.A., Patel S., Garver J., Gallo M., Hackett M., McLaughlin S., et al. (2006) A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 3, 41–6.

    Article  PubMed  CAS  Google Scholar 

  29. Denys, B., El H.H., Nollet F., Verhasselt B., and Philippe J. (2010) A Real-Time Polymerase Chain Reaction Assay for Rapid, Sensitive, and Specific Quantification of the JAK2V617F Mutation Using a Locked Nucleic Acid-Modified Oligonucleotide. J Mol Diagn 12, 512–9.

    Article  PubMed  CAS  Google Scholar 

  30. Deo, M., Yu J.Y., Chung K.H., Tippens M., and Turner D.L. (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235, 2538–48.

    Article  PubMed  CAS  Google Scholar 

  31. Yamasaki, K., Nakasa T., Miyaki S., Ishikawa M., Deie M., Adachi N., et al. (2009) Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum 60, 1035–41.

    Article  PubMed  CAS  Google Scholar 

  32. Niimoto, T., Nakasa T., Ishikawa M., Okuhara A., Izumi B., Deie M., et al. (2010) MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet Disord 11, 209.

    Article  PubMed  Google Scholar 

  33. Kidner, C., Timmermans M. (2006) In situ hybridization as a tool to study the role of microRNAs in plant development. Methods Mol Biol 342, 159–79.

    PubMed  CAS  Google Scholar 

  34. Darnell, D.K., Stanislaw S., Kaur S., and Antin P.B. (2010) Whole mount in situ hybridization detection of mRNAs using short LNA containing DNA oligonucleotide probes. RNA 16, 632–7.

    Article  PubMed  CAS  Google Scholar 

  35. Ason, B., Darnell D.K., Wittbrodt B., Berezikov E., Kloosterman W.P., Wittbrodt J., et al. (2006) Differences in vertebrate microRNA expression. Proc Natl Acad Sci USA 103, 14385–9.

    Article  PubMed  CAS  Google Scholar 

  36. Darnell, D.K., Kaur S., Stanislaw S., Konieczka J.H., Yatskievych T.A., and Antin P.B. (2006) MicroRNA expression during chick embryo development. Dev Dyn 235, 3156–65.

    Article  PubMed  CAS  Google Scholar 

  37. Karali, M., Peluso I., Marigo V., and Banfi S. (2007) Identification and characterization of microRNAs expressed in the mouse eye. Invest Ophthalmol Vis Sci 48, 509–15.

    Article  PubMed  Google Scholar 

  38. Sweetman, D., Goljanek K., Rathjen T., Oustanina S., Braun T., Dalmay T., and Munsterberg A. (2008) Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev Biol 321, 491–9.

    Article  PubMed  CAS  Google Scholar 

  39. Sweetman, D., Rathjen T., Jefferson M., Wheeler G., Smith T.G., Wheeler G.N., et al. (2006) FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos. Dev Dyn 235, 2185–91.

    Article  PubMed  CAS  Google Scholar 

  40. Wheeler, G., Valoczi A., Havelda Z., and Dalmay T. (2007) In situ detection of animal and plant microRNAs. DNA Cell Biol 26, 251–5.

    Article  PubMed  CAS  Google Scholar 

  41. Havelda, Z. (2010) In situ detection of miRNAs using LNA probes. Methods Mol Biol 592, 127–36.

    Article  PubMed  CAS  Google Scholar 

  42. Yuasa, K., Hagiwara Y., Ando M., Nakamura A., Takeda S., and Hijikata T. (2008) MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct 33, 163–9.

    Article  PubMed  CAS  Google Scholar 

  43. Fazi, F., Rosa A., Fatica A., Gelmetti V., De Marchis M.L., Nervi C., et al. (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123, 819–31.

    Article  PubMed  CAS  Google Scholar 

  44. Johnnidis, J.B., Harris M.H., Wheeler R.T., Stehling-Sun S., Lam M.H., Kirak O., et al. (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–9.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, S., Aurora A.B., Johnson B.A., Qi X., McAnally J., Hill J.A., et al. (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15, 261–71.

    Article  PubMed  Google Scholar 

  46. Yaylaoglu, M.B., Titmus A., Visel A., varez-Bolado G., Thaller C., and Eichele G. (2005) Comprehensive expression atlas of fibroblast growth factors and their receptors generated by a novel robotic in situ hybridization platform. Dev Dyn 234, 371–86.

    Google Scholar 

  47. Diez-Roux, G., Banfi S., Sultan M., Geffers L., Anand S., Rozado D., et al. (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9, e1000582.

    Article  PubMed  CAS  Google Scholar 

  48. Byers, R.J., Di V.D., O’connell F., Tholouli E., Levenson R.M., Gossage K., et al. (2007) Semiautomated multiplexed quantum dot-based in situ hybridization and spectral deconvolution. J Mol Diagn 9, 20–9.

    Article  PubMed  CAS  Google Scholar 

  49. Nitta, H., Hauss-Wegrzyniak B., Lehrkamp M., Murillo A.E., Gaire F., Farrell M., et al. (2008) Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH). Diagn Pathol 3, 41.

    Article  PubMed  Google Scholar 

  50. Nitta, H., Zhang W., Kelly B.D., Miller M., Pestic-Dragovich L., Bieniarz C., et al. (2010) Automated brightfield break-apart in situ hybridization (ba-ISH) application: ALK and MALT1 genes as models. Methods 52, 352–8.

    Article  PubMed  CAS  Google Scholar 

  51. Hultman, K.A., Bahary N., Zon L.I., and Johnson S.L. (2007) Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a. PLoS Genet 3, e17.

    Article  PubMed  Google Scholar 

  52. Song, R., Ro S., and Yan W. (2010) In situ hybridization detection of microRNAs. Methods Mol Biol 629, 287–94.

    PubMed  Google Scholar 

  53. Andreasen, D., Fog J.U., Biggs W., Salomon J., Dahslveen I.K., Baker A., and Mouritzen P. (2010) Improved microRNA quantification in total RNA from clinical samples. Methods 50, S6–9.

    Article  PubMed  CAS  Google Scholar 

  54. Boettger, T., Beetz N., Kostin S., Schneider J., Kruger M., Hein L., et al. (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 119, 2634–47.

    Article  PubMed  CAS  Google Scholar 

  55. Cordes, K.R., Sheehy N.T., White M.P., Berry E.C., Morton S.U., Muth A.N., et al. (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–10.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to ISH team at Exiqon: Stine Jørgensen, Mette Carlsen Mohr, Tina Bisgaard Sørensen, Marie-Louise Lunn, Adam Baker, and Søren Møller for their dedication and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boye Schnack Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nielsen, B.S. (2012). MicroRNA In Situ Hybridization. In: Fan, JB. (eds) Next-Generation MicroRNA Expression Profiling Technology. Methods in Molecular Biology, vol 822. Humana Press. https://doi.org/10.1007/978-1-61779-427-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-427-8_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-426-1

  • Online ISBN: 978-1-61779-427-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics