Skip to main content

Comparative Study of Differential Gene Expression in Closely Related Bacterial Species by Comparative Hybridization

  • Protocol
  • First Online:
Book cover Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 815))

Abstract

The ability to profile bacterial gene expression has markedly advanced the capacity to understand the molecular mechanisms of pathogenesis, epidemiology, and therapeutics. This advance has been coupled with the development of techniques that enable investigators to identify bacterial specifically expressed genes and promise to open new avenues of functional genomics by allowing researchers to focus on the identified differentially expressed genes. During the past two decades, a number of approaches have been developed to investigate bacterial genes differentially expressed in response to the changing environment, particularly during interaction with their hosts. The most commonly used techniques include in vivo expression technology, signature-tagged mutagenesis, differential fluorescence induction, and cDNA microarrays, which fall into two broad classes: mutagenesis-based technologies and hybridization-based technologies. Selective capture of transcribed sequences, a recently emerging method, is a hybridization-based technique. This technique is powerful in analyzing differential gene expression of the bacteria, with the superb ability to investigate the bacterial species with unknown genomic information. Herein, we describe the application of this technique in a comparative study of the gene expression between two closely related bacteria induced or repressed under a variety of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, D.K., Dahiya, P., Srivastava, K.K., Srivastava, R. and Srivastava, B.S. (2002) Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach. Tuberculosis 82, 175–182.

    Article  PubMed  CAS  Google Scholar 

  2. Handfield, M., Brady, L.J., Progulske-Fox, A. and Hillman, J.D. (2000) IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol. 8, 336–339.

    Article  PubMed  CAS  Google Scholar 

  3. Handfield, M., Seifert, T. and Hillman, J.D. (2002) In vivo expression of bacterial genes during human infections. Methods Mol. Med. 71, 225–242.

    Google Scholar 

  4. Hang, L.M., John, M., Asaduzzaman, E.A., Bridges, C., Vanderspurt, T.J., Kirn, R.K., Taylor, R.K., Hillman, J.D., Progulske-Fox, A., Handfield, M., Ryan, E.T. and Calderwood, S.B. (2003) Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl. Acad. Sci. USA 100, 8508–8513.

    Article  PubMed  Google Scholar 

  5. Rollins, S.M., Peppercorn, A., Hang, L., Hillman, J.D., Calderwood, S.B., Handfield, M. and Ryan, E.T. (2005) Technoreview: in vivo induced antigen technology (IVIAT). Cull. Microbiol. 7, 1–9.

    Article  CAS  Google Scholar 

  6. Mahan, M.J., Slauch, J.M. and Mekalanos, J.J. (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259, 686–688.

    Article  PubMed  CAS  Google Scholar 

  7. Veal-Carr, W.L. and Stibitz, S. (2005) Demonstration of differential virulence gene promoter activation in vivo in Bordetella pertussis using RIVET. Mol. Microbiol. 55, 788–798.

    Article  PubMed  CAS  Google Scholar 

  8. Angelichio, M.J. and Camilli, A. (2002) In vivo expression technology. Infect. Immun. 70, 6518–6523.

    Article  PubMed  CAS  Google Scholar 

  9. Valdivia, R.H. and Falkow, S. (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22, 367–378.

    Article  PubMed  CAS  Google Scholar 

  10. Hensel, M., Shea, J.E., Gleeson, C., Jones, M.D., Dalton, E. and Holden, D.W. (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403.

    Article  PubMed  CAS  Google Scholar 

  11. Shea, J.E., Santangelo, J.D. and Feldman, R.G. (2000) Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr. Opin. Microbiol. 3, 451–458.

    Article  PubMed  CAS  Google Scholar 

  12. Lehoux, D.E. and Levesque, R.C. (2000) Detection of genes essential in specific niches by signature-tagged mutagenesis. Curr. Opin. Biotech. 11, 434–439.

    Article  PubMed  CAS  Google Scholar 

  13. Mecsas, J. (2002) Use of signature-tagged mutagenesis in pathogenesis studies. Curr. Opin. Microbiol. 5, 33–37.

    Article  PubMed  CAS  Google Scholar 

  14. Judson, N. and Mekalanos, J.J. (2000) TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat. Biotech. 18, 740–745.

    Article  CAS  Google Scholar 

  15. Akerley, B.J., Rubin, E.J., Lampe, D.J. and Mekalanos, J.J. (1998) PCR-mediated detection of growth-attenuated mutants in large pools generated by in vitro transposon mutagenesis. Am. Soc. Microbiol. Gen. Meet. 98th, Atlanta.

    Google Scholar 

  16. Shelburne, S.A. and Musser, J.M. (2004) Virulence gene expression in vivo. Curr. Opin. Microbiol. 7, 283–289.

    Article  PubMed  CAS  Google Scholar 

  17. To, K.Y. (2000) Identification of differential gene expression by high throughput analysis. Comb Chem High Throughput Screen 3, 235–241.

    PubMed  CAS  Google Scholar 

  18. Boyce, J.D., Cullen, P.A. and Adler, B. (2004) Genomic-scale analysis of bacterial gene and protein expression in the host. Emerg. Infect. Dis. 10, 1357–1362.

    PubMed  CAS  Google Scholar 

  19. Hinton, J.C., Hautefort, I., Eriksson, S., Thompson, A. and Rhen, M. (2004) Benefits and pitfalls of using microarrays to monitor bacterial gene expression during infection. Curr. Opin. Microbiol. 7, 277–282.

    Article  PubMed  CAS  Google Scholar 

  20. Jansen, A. and Yu, J. (2006) Differential gene expression of pathogens inside infected hosts. Curr. Opin. Microbiol. 9, 138–142.

    Article  PubMed  CAS  Google Scholar 

  21. Graham, J.E. and Clark-Curtiss, J.E. (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci. USA 96, 11554–11559.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, S., Graham, J.E., Bigelow, L., Morse, P.D., 2nd and Wilkinson, B.J. (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl. Environ. Microbiol. 68, 1697–1705.

    Article  PubMed  CAS  Google Scholar 

  23. Hou, J.Y., Graham, J.E. and Clark-Curtiss, J.E. (2002) Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS). Infect. Immun. 70, 3714–3726.

    Article  PubMed  CAS  Google Scholar 

  24. Daigle, F., Graham, J.E. and Curtiss, R., 3 rd (2001) Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol. Microbiol. 41, 1211–1222.

    Article  PubMed  CAS  Google Scholar 

  25. Dozois, C.M., Daigle, F. and Curtiss, R., 3 rd (2003) Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc. Natl. Acad. Sci. USA 100, 247–252.

    Article  PubMed  CAS  Google Scholar 

  26. Baltes, N., Buettner, F.F. and Gerlach, G.F. (2007) Selective capture of transcribed sequences (SCOTS) of Actinobacillus pleuropneumoniae in the chronic stage of disease reveals an HlyX-regulated autotransporter protein. Vet. Microbiol. 123, 110–121.

    Article  PubMed  CAS  Google Scholar 

  27. Graham, J.E., Peek, R.M., Jr., Krishna, U. and Cover, T.L. (2002) Global analysis of Helicobacter pylori gene expression in human gastric mucosa. Gastroenterology 123, 1637–1648.

    Article  PubMed  CAS  Google Scholar 

  28. An, R., Sreevatsan, S. and Grewal, P.S. (2008) Moraxella osloensis gene expression in the slug host Deroceras reticulatum. BMC Microbiol. 8, 19.

    Article  PubMed  Google Scholar 

  29. An, R., Sreevatsan, S. and Grewal, P.S. (2009) Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. BMC Genomics 10, 433.

    Article  PubMed  Google Scholar 

  30. Haydel, S.E. and Clark-Curtiss, J.E. (2004) Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol. Lett. 236, 341–347.

    Article  PubMed  CAS  Google Scholar 

  31. Aljanabi, S.M. and Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25, 4692–4693.

    Article  PubMed  CAS  Google Scholar 

  32. Sambrook, J., Russell, D.W. and Russell, D. (2000) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  33. Heck, K.L., Jr., Belle, G.V. and Simberloff, D. (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461.

    Article  Google Scholar 

  34. Wang, Y.L. and Morse, D. (2006) Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium. Nucleic Acids Res. 34, 613–619.

    Article  PubMed  Google Scholar 

  35. Suga, K., Mark Welch, D., Tanaka, Y., Sakakura, Y. and Hagiwara, A. (2007) Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS ONE 2, e671.

    Article  PubMed  Google Scholar 

  36. Zhu, X.C., Tu, Z.J., Coussens, P.M., Kapur, V., Janagama, H., Naser, S. and Sreevatsan, S. (2008) Transcriptional analysis of diverse strains Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages. Microb. Infect. 10, 1274–1282.

    Article  CAS  Google Scholar 

  37. Frias-Lopez, J., Shi, Y., Tyson, G.W., Coleman, M.L., Schuster, S.C., Chisholm, S.W. and Delong, E.F. (2008) Microbial community gene expression in ocean surface waters. PNAS 105, 3805–3810.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a competitive grant from the Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruisheng An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

An, R., Grewal, P.S. (2012). Comparative Study of Differential Gene Expression in Closely Related Bacterial Species by Comparative Hybridization. In: Kaufmann, M., Klinger, C. (eds) Functional Genomics. Methods in Molecular Biology, vol 815. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-424-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-424-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-423-0

  • Online ISBN: 978-1-61779-424-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics