Bioluminescence Resonance Energy Transfer: An Emerging Tool for the Detection of Protein–Protein Interaction in Living Cells

  • Søren W. GerstingEmail author
  • Amelie S. Lotz-Havla
  • Ania C. Muntau
Part of the Methods in Molecular Biology book series (MIMB, volume 815)


In the field of proteomics, numerous advanced technologies have evolved that aim to provide the molecular data necessary for an in-depth understanding of biological processes. Protein–protein interactions (PPI) are at the heart of cellular function and a milestone yet to be achieved is the mapping of a complete human interactome. Bioluminescence resonance energy transfer (BRET) has become a popular technique to investigate PPI. As BRET enables the detection of PPI in living cells, problems associated with in vitro biochemical assays can be circumvented, thus making BRET a powerful tool for monitoring interactions of virtually all kinds of protein species.

Key words

Bioluminescence resonance energy transfer Protein–protein interaction Living cells Renilla luciferase Yellow fluorescent protein Nucleofection 



Financial support from the Bavarian Genome Research Network (BayGene) and the LMUexcellent grant 42595-6 to A.C.M. is gratefully acknowledged.


  1. 1.
    Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178PubMedCrossRefGoogle Scholar
  2. 2.
    Venkatesan K, Rual JF, Vazquez A et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90PubMedCrossRefGoogle Scholar
  3. 3.
    Stumpf MP, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105:6959–6964PubMedCrossRefGoogle Scholar
  4. 4.
    Hart GT, Ramani AK, and Marcotte EM (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7:120PubMedCrossRefGoogle Scholar
  5. 5.
    Pfleger KD, and Eidne KA (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3:165–174PubMedCrossRefGoogle Scholar
  6. 6.
    Wu P, and Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13PubMedCrossRefGoogle Scholar
  7. 7.
    Mercier JF, Salahpour A, Angers S et al (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931PubMedCrossRefGoogle Scholar
  8. 8.
    Hamdan FF, Percherancier Y, Breton B et al (2006) Monitoring protein–protein interactions in living cells by bioluminescence resonance energy transfer (BRET). Curr Protoc Neurosci Chapter 5:Unit 5 23Google Scholar
  9. 9.
    Ayoub MA, and Pfleger KD (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10:44–52PubMedCrossRefGoogle Scholar
  10. 10.
    Xu Y, Piston DW, and Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 96:151–156PubMedCrossRefGoogle Scholar
  11. 11.
    Hamdan FF, Audet M, Garneau P et al (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10:463–475PubMedCrossRefGoogle Scholar
  12. 12.
    Promega (2010) ViviRenTM Live Cell Substrate. Promega Technical Resources TM064Google Scholar
  13. 13.
    Promega (2009) EnduRenTM Live Cell Substrate Promega Technical Resources TM244Google Scholar
  14. 14.
    Bertrand L, Parent S, Caron M et al (2002) The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). J Recept Signal Transduct Res 22:533–541PubMedCrossRefGoogle Scholar
  15. 15.
    De A, Ray P, Loening AM et al (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein–protein interactions from single live cells and living animals. FASEB J 23:2702–2709PubMedCrossRefGoogle Scholar
  16. 16.
    Gresch O, Engel FB, Nesic D et al (2004) New non-viral method for gene transfer into primary cells. Methods 33:151–163PubMedCrossRefGoogle Scholar
  17. 17.
    Hamm A, Krott N, Breibach I et al (2002) Efficient transfection method for primary cells. Tissue Eng 8:235–245PubMedCrossRefGoogle Scholar
  18. 18.
    James JR, Oliveira MI, Carmo AM et al (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006PubMedCrossRefGoogle Scholar
  19. 19.
    Lin H, Hutchcroft JE, Andoniou CE et al (1998) Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem 273:19914–19921PubMedCrossRefGoogle Scholar
  20. 20.
    Claret FX, Hibi M, Dhut S et al (1996) A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383:453–457PubMedCrossRefGoogle Scholar
  21. 21.
    Filip AM, Klug J, Cayli S et al (2009) Ribosomal protein S19 interacts with macrophage migration inhibitory factor and attenuates its pro-inflammatory function. J Biol Chem 284:7977–7985PubMedCrossRefGoogle Scholar
  22. 22.
    Vizoso Pinto MG, Villegas JM, Peter J et al (2009) LuMPIS – a modified luminescence-based mammalian interactome mapping pull-down assay for the investigation of protein–protein interactions encoded by GC-low ORFs. Proteomics 9:5303–5308PubMedCrossRefGoogle Scholar
  23. 23.
    Bacart J, Corbel C, Jockers R et al (2008) The BRET technology and its application to screening assays. Biotechnology journal 3:311–324PubMedCrossRefGoogle Scholar
  24. 24.
    Braun P, Tasan M, Dreze M et al (2009) An experimentally derived confidence score for binary protein–protein interactions. Nat Methods 6:91–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Søren W. Gersting
    • 1
    Email author
  • Amelie S. Lotz-Havla
    • 1
  • Ania C. Muntau
    • 1
  1. 1.Department of Molecular Pediatrics, Dr. von Hauner Children’s HospitalLudwig-Maximilians-UniversityMünichGermany

Personalised recommendations