Skip to main content

Assessment of DNA Interstrand Crosslinks Using the Modified Alkaline Comet Assay

  • Protocol
  • First Online:
Genetic Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 817))

Abstract

The single cell gel electrophoresis (SCGE) assay, more commonly known as the comet assay, due to the “comet-like” appearance of the cells, was originally developed as a technique to measure the presence of DNA single-strand breaks. The assay is performed on single cells embedded in agar and placed in an electrical field at alkaline pH, so that fragments of negatively charged single-stranded DNA move through the gel toward the positively charged anode. Undamaged DNA moves relatively slowly, forming the head of the comet, while DNA fragmented due to the presence of single-strand breaks, moves more quickly giving the appearance of the tail. The extent of DNA migration is a measure of the DNA damage present. Since it was first developed, the comet assay has been adapted for measuring other types of DNA damage. The neutral comet assay has been employed for DNA double-strand breaks, while techniques using DNA repair enzymes to cleave specific adducts, UvrABC for ultraviolet radiation induced adducts, for example, have also been described. Here, we describe a modified version of the comet assay for the measurement of interstrand crosslinks (ICLs). Interstrand crosslinking agents include the chemotherapeutic agents mitomycin C and cis-platin, psoralen plus UVA light (PUVA) used to treat hyperproliferative skin disorders and diepoxybutane, a metabolite of 1,3-butadiene used in industrial processes and an environmental pollutant. ICLs are a potent and cytotoxic form of DNA damage as they prevent DNA strand separation, thereby preventing DNA replication. Their removal requires several different DNA repair processes including translesion synthesis and homologous recombination. As ICLs prevent separation of the DNA strands, their presence results in less DNA migration in the comet assay. To successfully measure ICLs, it is necessary to incorporate a step that induces single-strand breaks (using a defined dose of ionizing radiation) that allows the crosslinked DNA to migrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murnane, J. P., and Byfield, J. E. (1981) Irreparable DNA cross-links and mammalian cell lethality with bifunctional alkylating agents, Chem Biol Interact 38, 75–86.

    Article  PubMed  CAS  Google Scholar 

  2. Lawley, P. D., and Phillips, D. H. (1996) DNA adducts from chemotherapeutic agents, Mutat Res 355, 13–40.

    Article  PubMed  Google Scholar 

  3. Dronkert, M. L. G., and Kanaar, R. (2001) Repair of DNA interstrand cross-links, Mutation Research-DNA Repair 486, 217–247.

    Article  PubMed  CAS  Google Scholar 

  4. Clingen, P. H., De Silva, I. U., McHugh, P. J., Ghadessy, F. J., Tilby, M. J., Thurston, D. E., and Hartley, J. A. (2005) The XPF-ERCC1 endonuclease and homologous recombination contribute to the repair of minor groove DNA interstrand crosslinks in mammalian cells produced by the pyrrolo[2,1-c][1,4]benzodiazepine dimer SJG-136, Nucleic Acids Res 33, 3283–3291.

    Article  PubMed  CAS  Google Scholar 

  5. Spanswick, V. J., Craddock, C., Sekhar, M., Mahendra, P., Shankaranarayana, P., Hughes, R. G., Hochhauser, D., and Hartley, J. A. (2002) Repair of DNA interstrand crosslinks as a mechanism of clinical resistance to melphalan in multiple myeloma, Blood 100, 224–229.

    Article  PubMed  CAS  Google Scholar 

  6. McKenna, D. J., Gallus, M., McKeown, S. R., Downes, C. S., and McKelvey-Martin, V. J. (2003) Modification of the alkaline Comet assay to allow simultaneous evaluation of mitomycin C-induced DNA cross-link damage and repair of specific DNA sequences in RT4 cells, DNA Repair (Amst) 2, 879–890.

    Article  CAS  Google Scholar 

  7. Wu, J. H., Wilson, J. B., Wolfreys, A. M., Scott, A., and Jones, N. J. (2009) Optimization of the comet assay for the sensitive detection of PUVA-induced DNA interstrand cross-links, Mutagenesis 24, 173–181.

    Article  PubMed  CAS  Google Scholar 

  8. Ostling, O., and Johanson, K. J. (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells, Biochem Biophys Res Commun 123, 291–298.

    Article  PubMed  CAS  Google Scholar 

  9. Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. (1988) A simple technique for quantitation of low levels of DNA damage in individual cells, Exp Cell Res 175, 184–191.

    Article  PubMed  CAS  Google Scholar 

  10. Singh, N. P., Stephens, R. E., and Schneider, E. L. (1994) Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage, Int J Radiat Biol 66, 23–28.

    Article  PubMed  CAS  Google Scholar 

  11. Tomasz, M. (1995) Mitomycin C – Small, fast and deadly (but very selective), Chemistry & Biology 2, 575–579.

    Article  CAS  Google Scholar 

  12. Chiou, C. C., and Yang, J. L. (1995) Mutagenicity and specific mutation spectrum induced by 8-methoxypsoralen plus a low dose of UVA in the hprt gene in diploid human fibroblasts, Carcinogenesis 16, 1357–1362.

    Article  PubMed  CAS  Google Scholar 

  13. Olive, P. L. (2002) The comet assay. An overview of techniques, Methods Mol Biol 203, 179–194.

    CAS  Google Scholar 

  14. Kumaravel, T. S., and Jha, A. N. (2006) Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals, Mutat Res 605, 7–16.

    Article  PubMed  CAS  Google Scholar 

  15. Rothfuss, A., and Grompe, M. (2004) Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway, Mol Cell Biol 24, 123–134.

    Article  PubMed  CAS  Google Scholar 

  16. Rojas, E., Lopez, M. C., and Valverde, M. (1999) Single cell gel electrophoresis assay: methodology and applications, J Chromatogr B Biomed Sci Appl 722, 225–254.

    Article  PubMed  CAS  Google Scholar 

  17. Altman, S. A., Randers, L., and Rao, G. (1993) Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations, Biotechnol Prog 9, 671–674.

    Article  PubMed  CAS  Google Scholar 

  18. Singh, N. P. (2000) Microgels for estimation of DNA strand breaks, DNA protein crosslinks and apoptosis, Mutat Res 455, 111–127.

    CAS  Google Scholar 

  19. Banath, J. P., Kim, A., and Olive, P. L. (2001) Overnight lysis improves the efficiency of detection of DNA damage in the alkaline comet assay, Radiat Res 155, 564–571.

    Article  PubMed  CAS  Google Scholar 

  20. Merk, O., and Speit, G. (1999) Detection of crosslinks with the comet assay in relationship to genotoxicity and cytotoxicity, Environ Mol Mutagen 33, 167–172.

    Article  PubMed  CAS  Google Scholar 

  21. Hartley, J. M., Spanswick, V. J., Gander, M., Giacomini, G., Whelan, J., Souhami, R. L., and Hartley, J. A. (1999) Measurement of DNA cross-linking in patients on ifosfamide therapy using the single cell gel electrophoresis (comet) assay, Clin Cancer Res 5, 507–512.

    PubMed  CAS  Google Scholar 

  22. Collins, A. R. (2004) The comet assay for DNA damage and repair: principles, applications, and limitations, Mol Biotechnol 26, 249–261.

    Article  PubMed  CAS  Google Scholar 

  23. Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., and Sasaki, Y. F. (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ Mol Mutagen 35, 206–221.

    Article  PubMed  CAS  Google Scholar 

  24. Olive, P. L., and Banath, J. P. (1993) Induction and rejoining of radiation-induced DNA single-strand breaks: “tail moment” as a function of position in the cell cycle, Mutat Res 294, 275–283.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel J. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wu, J.H., Jones, N.J. (2012). Assessment of DNA Interstrand Crosslinks Using the Modified Alkaline Comet Assay. In: Parry, J., Parry, E. (eds) Genetic Toxicology. Methods in Molecular Biology, vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-421-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-421-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-420-9

  • Online ISBN: 978-1-61779-421-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics