Skip to main content

RNA-Based Networks: Using RNA Aptamers and Ribozymes as Synthetic Genetic Devices

  • Protocol
  • First Online:
Synthetic Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 813))

Abstract

Within the last few years, a set of synthetic riboswitches has been engineered, which expands the toolbox of genetic regulatory devices. Small molecule binding aptamers have been used for the design of such riboswitches by insertion into untranslated regions of mRNAs, exploiting the fact that upon ligand binding the RNA structure interferes either with translation initiation or pre-mRNA splicing in yeast. In combination with self-cleaving ribozymes, aptamers have been used to modulate RNA stability. In this chapter, we discuss the applicability of different aptamers, ways to identify novel genetic devices, the pros and cons of various insertion sites and the application of allosteric ribozymes. Our expertise help to apply synthetic riboswitches to engineer complex genetic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endy, D. (2005) Foundations for engineering biology. Nature 438, 449–453

    Article  PubMed  CAS  Google Scholar 

  2. Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822

    Article  PubMed  CAS  Google Scholar 

  3. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510

    Article  PubMed  CAS  Google Scholar 

  4. Hermann, T. and Patel, D.J. (2000) Adaptive recognition by nucleic acid aptamers. Science 287, 820–825

    Article  PubMed  CAS  Google Scholar 

  5. Weigand, J.E. and Suess, B. (2009) Aptamers and riboswitches: perspectives in biotechnology. Appl. Microbiol. Biotechnol. 85, 229–236

    Article  PubMed  CAS  Google Scholar 

  6. Muller, M., Weigand, J.E., Weichenrieder, O. and Suess, B. (2006) Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res. 34, 2607–2617

    Article  PubMed  Google Scholar 

  7. Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B. (1994) High-resolution molecular discrimination by RNA. Science 263, 1425–1429

    Article  PubMed  CAS  Google Scholar 

  8. Weigand, J.E., Schmidtke, S.R., Will, T.J., Duchardt-Ferner, E., Hammann, C., Wohnert, J. and Suess, B. (2010) Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity. Nucleic Acids Res. 39(8), 3363–3372

    Google Scholar 

  9. Grate, D. and Wilson, C. (2001) Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg. Med. Chem. 9, 2565–2570

    Article  PubMed  CAS  Google Scholar 

  10. Hanson, S., Bauer, G., Fink, B. and Suess, B. (2005) Molecular analysis of a synthetic tetracycline-binding riboswitch. RNA 11, 503–511

    Article  PubMed  CAS  Google Scholar 

  11. Wunnicke, D., Strohbach, D., Weigand, J.E., Appel, B., Feresin, E., Suess, B., Muller, S. and Steinhoff, H.J. (2011) Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. RNA 17, 182–188

    Article  PubMed  CAS  Google Scholar 

  12. Xiao, H., Edwards, T.E. and Ferre-D’Amare, A.R. (2008) Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137

    Article  PubMed  CAS  Google Scholar 

  13. Weigand, J.E. and Suess, B. (2007) Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res. 35, 4179–4185

    Article  PubMed  CAS  Google Scholar 

  14. Duchardt-Ferner, E., Weigand, J.E., Ohlenschlager, O., Schmidtke, S.R., Suess, B. and Wohnert, J. (2010) Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew. Chem. Int. Ed. Engl. 49, 6216–6219

    Article  PubMed  CAS  Google Scholar 

  15. Werstuck, G. and Green, M.R. (1998) Controlling gene expression in living cells through small molecule-RNA interactions. Science 282, 296–298

    Article  PubMed  CAS  Google Scholar 

  16. Harvey, I., Garneau, P. and Pelletier, J. (2002) Inhibition of translation by RNA-small molecule interactions. RNA 8, 452–463

    Article  PubMed  CAS  Google Scholar 

  17. Desai, S.K. and Gallivan, J.P. (2004) Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J. Am. Chem. Soc. 126, 13247–13254

    Article  PubMed  CAS  Google Scholar 

  18. Suess, B., Fink, B., Berens, C., Stentz, R. and Hillen, W. (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 32, 1610–1614

    Article  PubMed  CAS  Google Scholar 

  19. Topp, S., Reynoso, C.M., Seeliger, J.C., Goldlust, I.S., Desai, S.K., Murat, D., Shen, A., Puri, A.W., Komeili, A., Bertozzi, C.R. et al. (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl. Environ. Microbiol. 76, 7881–7884

    Article  PubMed  CAS  Google Scholar 

  20. Wieland, M., Benz, A., Klauser, B. and Hartig, J.S. (2009) Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew. Chem. Int. Ed. Engl. 48, 2715–2718

    Article  PubMed  CAS  Google Scholar 

  21. Wieland, M. and Hartig, J.S. (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew. Chem. Int. Ed. Engl. 47, 2604–2607

    Article  PubMed  CAS  Google Scholar 

  22. Wieland, M., Gfell, M. and Hartig, J.S. (2009) Expanded hammerhead ribozymes containing addressable three-way junctions. RNA 15, 968–976

    Article  PubMed  CAS  Google Scholar 

  23. Auslander, S., Ketzer, P. and Hartig, J.S. (2010) A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol. Biosyst. 6, 807–814

    Article  PubMed  Google Scholar 

  24. Win, M.N. and Smolke, C.D. (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl. Acad. Sci. USA 104, 14283–14288

    Article  PubMed  CAS  Google Scholar 

  25. Win, M.N. and Smolke, C.D. (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460

    Article  PubMed  CAS  Google Scholar 

  26. Chen, Y.Y., Jensen, M.C. and Smolke, C.D. (2010) Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl. Acad. Sci. USA 107, 8531–8536

    Article  PubMed  CAS  Google Scholar 

  27. Lynch, S.A., Topp, S. and Gallivan, J.P. (2009) High-throughput screens to discover synthetic riboswitches. Methods Mol. Biol. 540, 321–333

    Article  PubMed  CAS  Google Scholar 

  28. Suess, B. and Weigand, J.E. (2009) Aptamers as artificial gene regulation elements. Methods Mol. Biol. 535, 201–208

    PubMed  CAS  Google Scholar 

  29. Hanson, S., Berthelot, K., Fink, B., McCarthy, J.E. and Suess, B. (2003) Tetracycline-aptamer-mediated translational regulation in yeast. Mol. Microbiol. 49, 1627–1637

    Article  PubMed  CAS  Google Scholar 

  30. Suess, B., Hanson, S., Berens, C., Fink, B., Schroeder, R. and Hillen, W. (2003) Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res. 31, 1853–1858

    Article  PubMed  CAS  Google Scholar 

  31. Weigand, J.E., Sanchez, M., Gunnesch, E.B., Zeiher, S., Schroeder, R. and Suess, B. (2008) Screening for engineered neomycin riboswitches that control translation initiation. RNA 14, 89–97

    Article  PubMed  CAS  Google Scholar 

  32. Kotter, P., Weigand, J.E., Meyer, B., Entian, K.D. and Suess, B. (2009) A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res. 37, e120

    Article  PubMed  Google Scholar 

  33. Soukup, G.A. and Breaker, R.R. (1999) Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96, 3584–3589

    Article  PubMed  CAS  Google Scholar 

  34. Tang, J. and Breaker, R.R. (1997) Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459

    Article  PubMed  CAS  Google Scholar 

  35. Hammann, C. and Lilley, D.M. (2002) Folding and activity of the hammerhead ribozyme. Chembiochem 3, 690–700

    Article  PubMed  CAS  Google Scholar 

  36. Khvorova, A., Lescoute, A., Westhof, E. and Jayasena, S.D. (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat. Struct. Biol. 10, 708–712

    Article  PubMed  CAS  Google Scholar 

  37. Yen, L., Svendsen, J., Lee, J.S., Gray, J.T., Magnier, M., Baba, T., D’Amato, R.J. and Mulligan, R.C. (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431, 471–476

    Article  PubMed  CAS  Google Scholar 

  38. Scott, W.G., Martick, M. and Chi, Y.I. (2009) Structure and function of regulatory RNA elements: ribozymes that regulate gene expression. Biochim. Biophys. Acta 1789, 634–641

    PubMed  CAS  Google Scholar 

  39. Thompson, K.M., Syrett, H.A., Knudsen, S.M. and Ellington, A.D. (2002) Group I aptazymes as genetic regulatory switches. BMC Biotechnol. 2, 21

    Article  PubMed  Google Scholar 

  40. Wieland, M., Berschneider, B., Erlacher, M.D. and Hartig, J.S. (2010) Aptazyme-mediated regulation of 16S ribosomal RNA. Chem. Biol. 17, 236–242

    Article  PubMed  CAS  Google Scholar 

  41. Berschneider, B., Wieland, M., Rubini, M. and Hartig, J.S. (2009) Small-molecule-dependent regulation of transfer RNA in bacteria. Angew. Chem. Int. Ed. Engl. 48, 7564–7567

    Article  PubMed  CAS  Google Scholar 

  42. Kumar, D., An, C.I. and Yokobayashi, Y. (2009) Conditional RNA interference mediated by allosteric ribozyme. J. Am. Chem. Soc. 131, 13906–13907

    Article  PubMed  CAS  Google Scholar 

  43. Mateus, C. and Avery, S.V. (2000) Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16, 1313–1323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Aventis Foundation, the Deutsche Forschungsgemeinschaft (SU402/4-1 and the Excellence Cluster: Macromolecular Complexes) and the Else-Kröner-Fresenius Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrix Suess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Weigand, J.E., Wittmann, A., Suess, B. (2012). RNA-Based Networks: Using RNA Aptamers and Ribozymes as Synthetic Genetic Devices. In: Weber, W., Fussenegger, M. (eds) Synthetic Gene Networks. Methods in Molecular Biology, vol 813. Humana Press. https://doi.org/10.1007/978-1-61779-412-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-412-4_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-411-7

  • Online ISBN: 978-1-61779-412-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics