Skip to main content

Identifying and Optimizing Intracellular Protein–Protein Interactions Using Bacterial Genetic Selection

  • Protocol
  • First Online:
Synthetic Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 813))

Abstract

Protein–protein interactions are crucial for the vast majority of biological processes. To fully understand these processes therefore requires methods for identifying protein interactions within the complex cellular environment. To isolate interacting proteins, we have developed a simple and reliable genetic selection by exploiting the inbuilt “hitchhiker” mechanism of the Escherichia coli twin-arginine translocation (Tat) pathway. This method is based on the unique ability of the Tat system to efficiently co-localize noncovalent complexes of two folded polypeptides to the periplasmic space of E. coli. The genetic selection is comprised of two engineered fusion proteins: an N-terminal Tat signal peptide fused to the protein of interest, and the known or putative partner protein fused to mature TEM-1 β-lactamase. The efficiency with which co-localized β-lactamase chimeras are exported in the periplasm, and thus confer ampicillin resistance to cells, is directly linked to the relative binding affinity of the protein-ligand system. Thus, ampicillin resistance can be used as a convenient readout for identifying and optimizing protein interactions in E. coli. Furthermore, because Tat substrates must be correctly folded for export, our method favors the identification of soluble, non-aggregating, protease-resistant protein pairs. Overall, we anticipate that this new selection tool will be useful for discovering and engineering protein drugs, protein complexes for structural biology, factors that inhibit PPIs, and components for synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, G. P., and Petrenko, V. A. (1997) Phage Display, Chem Rev 97, 391–410.

    Article  PubMed  CAS  Google Scholar 

  2. Hu, J. C., Kornacker, M. G., and Hochschild, A. (2000) Escherichia coli one- and two-hybrid systems for the analysis and identification of protein-protein interactions, Methods 20, 80–94.

    Article  PubMed  CAS  Google Scholar 

  3. Phizicky, E. M., and Fields, S. (1995) Protein-protein interactions: methods for detection and analysis, Microbiol Rev 59, 94–123.

    PubMed  CAS  Google Scholar 

  4. Robinson, C., and Bolhuis, A. (2004) Tat-dependent protein targeting in prokaryotes and chloroplasts, Biochim Biophys Acta 1694, 135–147.

    Article  PubMed  CAS  Google Scholar 

  5. Robinson, C., and Bolhuis, A. (2001) Protein targeting by the twin-arginine translocation pathway, Nat Rev Mol Cell Biol 2, 350–356.

    Article  PubMed  CAS  Google Scholar 

  6. Muller, M., and Klosgen, R. B. (2005) The Tat pathway in bacteria and chloroplasts (review), Mol Membr Biol 22, 113–121.

    Article  PubMed  Google Scholar 

  7. Muller, M. (2005) Twin-arginine-specific protein export in Escherichia coli, Res Microbiol 156, 131–136.

    Article  PubMed  Google Scholar 

  8. Lee, P. A., Tullman-Ercek, D., and Georgiou, G. (2006) The bacterial twin-arginine translocation pathway, Annu Rev Microbiol 60, 373–395.

    Article  PubMed  Google Scholar 

  9. Weiner, J. H., Bilous, P. T., Shaw, G. M., Lubitz, S. P., Frost, L., Thomas, G. H., Cole, J. A., and Turner, R. J. (1998) A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins, Cell 93, 93–101.

    Article  PubMed  CAS  Google Scholar 

  10. Berks, B. C. (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22, 393–404.

    Article  PubMed  CAS  Google Scholar 

  11. Berks, B. C., Sargent, F., De Leeuw, E., Hinsley, A. P., Stanley, N. R., Jack, R. L., Buchanan, G., and Palmer, T. (2000) A novel protein transport system involved in the biogenesis of bacterial electron transfer chains, Biochim Biophys Acta 1459, 325–330.

    Article  PubMed  CAS  Google Scholar 

  12. Berks, B. C., Sargent, F., and Palmer, T. (2000) The Tat protein export pathway, Mol Microbiol 35, 260–274.

    Article  PubMed  CAS  Google Scholar 

  13. Ribnicky, B., Van Blarcom, T., and Georgiou, G. (2007) A scFv antibody mutant isolated in a genetic screen for improved export via the twin arginine transporter pathway exhibits faster folding, J Mol Biol 369, 631–639.

    Article  PubMed  CAS  Google Scholar 

  14. Rodrigue, A., Chanal, A., Beck, K., Muller, M., and Wu, L. F. (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway, J Biol Chem 274, 13223–13228.

    Article  PubMed  CAS  Google Scholar 

  15. Waraho, D., and DeLisa, M. P. (2009) Versatile selection technology for intracellular protein-protein interactions mediated by a unique bacterial hitchhiker transport mechanism, Proc Natl Acad Sci USA 106, 3692–3697.

    Article  PubMed  CAS  Google Scholar 

  16. Bogsch, E. G., Sargent, F., Stanley, N. R., Berks, B. C., Robinson, C., and Palmer, T. (1998) An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria, J Biol Chem 273, 18003–18006.

    Article  PubMed  CAS  Google Scholar 

  17. Sargent, F., Bogsch, E. G., Stanley, N. R., Wexler, M., Robinson, C., Berks, B. C., and Palmer, T. (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway, EMBO J 17, 3640–3650.

    Article  PubMed  CAS  Google Scholar 

  18. Settles, A. M., Yonetani, A., Baron, A., Bush, D. R., Cline, K., and Martienssen, R. (1997) Sec-independent protein translocation by the maize Hcf106 protein, Science 278, 1467–1470.

    Article  PubMed  CAS  Google Scholar 

  19. Behrendt, J., Standar, K., Lindenstrauss, U., and Bruser, T. (2004) Topological studies on the twin-arginine translocase component TatC, FEMS Microbiol Lett 234, 303–308.

    Article  PubMed  CAS  Google Scholar 

  20. Alami, M., Luke, I., Deitermann, S., Eisner, G., Koch, H. G., Brunner, J., and Muller, M. (2003) Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli, Mol Cell 12, 937–946.

    Article  PubMed  CAS  Google Scholar 

  21. Mori, H., and Cline, K. (2002) A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid (Delta]pH/Tat translocase, J Cell Biol 157, 205–210.

    Article  PubMed  CAS  Google Scholar 

  22. Cline, K., and McCaffery, M. (2007) Evidence for a dynamic and transient pathway through the Tat protein transport machinery, EMBO J 26, 3039–3049.

    Article  PubMed  CAS  Google Scholar 

  23. Gohlke, U., Pullan, L., McDevitt, C. A., Porcelli, I., de Leeuw, E., Palmer, T., Saibil, H. R., and Berks, B. C. (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter, Proc Natl Acad Sci USA 102, 10482–10486.

    Article  PubMed  CAS  Google Scholar 

  24. DeLisa, M. P., Tullman, D., and Georgiou, G. (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway, Proc Natl Acad Sci USA 100, 6115–6120.

    Article  PubMed  CAS  Google Scholar 

  25. Fisher, A. C., and DeLisa, M. P. (2009) Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery, J Mol Biol 385, 299–311.

    Article  PubMed  CAS  Google Scholar 

  26. Fisher, A. C., Kim, J.-Y., Perez-Rodriguez, R., Tullman-Ercek, D., Fish, W., Henderson, L. A., and DeLisa, M. P. (2008) Exploration of twin-arginine translocation for the expression and purification of correctly folded proteins in Escherichia coli, Microbial Biotechnol 1, 403–415.

    Article  CAS  Google Scholar 

  27. Fisher, A. C., Kim, W., and DeLisa, M. P. (2006) Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway, Protein Sci 15, 449–458.

    Article  PubMed  CAS  Google Scholar 

  28. Gushchina, L. V., Gabdulkhakov, A. G., and Filimonov, V. V. (2009) Design and structural and thermodynamic studies of a chimeric protein derived from spectrin SH3-domain, Mol Biol (Mosk) 43, 483–491.

    Article  CAS  Google Scholar 

  29. Richter, S., and Bruser, T. (2005) Targeting of unfolded PhoA to the Tat translocon of Escherichia coli, J Biol Chem 280, 42723–42730.

    Article  PubMed  CAS  Google Scholar 

  30. Sanders, C., Wethkamp, N., and Lill, H. (2001) Transport of cytochrome c derivatives by the bacterial Tat protein translocation system, Mol Microbiol 41, 241–246.

    Article  PubMed  CAS  Google Scholar 

  31. Bruser, T., Yano, T., Brune, D. C., and Daldal, F. (2003) Membrane targeting of a folded and cofactor-containing protein, Eur J Biochem 270, 1211–1221.

    Article  PubMed  CAS  Google Scholar 

  32. Feilmeier, B. J., Iseminger, G., Schroeder, D., Webber, H., and Phillips, G. J. (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli, J Bacteriol 182, 4068–4076.

    Article  PubMed  CAS  Google Scholar 

  33. Mansell, T. J., Linderman, S. W., Fisher, A. C., and Delisa, M. P. (2010) A rapid protein folding assay for the bacterial periplasm, Protein Sci 19, 1079–1090.

    Article  PubMed  CAS  Google Scholar 

  34. Santini, C. L., Bernadac, A., Zhang, M., Chanal, A., Ize, B., Blanco, C., and Wu, L. F. (2001) Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock, J Biol Chem 276, 8159–8164.

    Article  PubMed  CAS  Google Scholar 

  35. Thomas, J. D., Daniel, R. A., Errington, J., and Robinson, C. (2001) Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli, Mol Microbiol 39, 47–53.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, L. L., Ha, H., Chang, Y. T., and DeLisa, M. P. (2009) Discovery of amyloid-beta aggregation inhibitors using an engineered assay for intracellular protein folding and solubility, Protein Sci 18, 277–286.

    Article  PubMed  CAS  Google Scholar 

  37. DeLisa, M. P., Tullman, D., and Georgiou, G. (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway, Proc Natl Acad Sci USA 100, 6115–6120.

    Article  PubMed  CAS  Google Scholar 

  38. der Maur, A. A., Zahnd, C., Fischer, F., Spinelli, S., Honegger, A., Cambillau, C., Escher, D., Pluckthun, A., and Barberis, A. (2002) Direct in vivo screening of intrabody libraries constructed on a highly stable single-chain framework, J Biol Chem 277, 45075–45085.

    Article  Google Scholar 

  39. Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J Bacteriol 177, 4121–4130.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. DeLisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Waraho, D., DeLisa, M.P. (2012). Identifying and Optimizing Intracellular Protein–Protein Interactions Using Bacterial Genetic Selection. In: Weber, W., Fussenegger, M. (eds) Synthetic Gene Networks. Methods in Molecular Biology, vol 813. Humana Press. https://doi.org/10.1007/978-1-61779-412-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-412-4_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-411-7

  • Online ISBN: 978-1-61779-412-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics