Skip to main content

Robust Optimal Design of Synthetic Biological Networks

  • Protocol
  • First Online:
Synthetic Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 813))

Abstract

In engineering, the use of mathematical modeling for design purposes has a long history. Long before any technical realization, a system is planned, simulated, and tested extensively on the computer. In biosciences, however, the application of model-based design before going to the wet lab is still rather rare but has particularly high potential in synthetic biology. We demonstrate exemplarily how mathematical modeling and numerical optimization can be used for the design of a circadian rhythm that is supposed to oscillate robustly with respect to uncertainty in system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Purnick PEM, Weiss R. The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol. 2009 Jun;10(6):­410–422. Available from: http://www.dx.doi.org/10.1038/nrm2698 .

  2. Marchisio MA, Stelling J. Computational design tools for synthetic biology. Curr Opin Biotechnol. 2009 Aug;20(4):479–485. Available from: http://www.dx.doi.org/10.1016/j.copbio.2009.08.007 .

  3. Mohideen JM, Perkins JD, Pistikopoulos EN. Optimal design of dynamic systems under uncertainty. AIChE J. 1996;42(8):2251–2272. Available from: http://www.dx.doi.org/10.1002/aic.690420814 .

  4. Kleitman N. Biological rhythms and cycles. Physiol Rev. 1949 Jan;29(1): 1–30.

    Google Scholar 

  5. Lévi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007;47:593–628.

    Google Scholar 

  6. Clodong S, Dühring U, Kronk L, Wilde A, Axmann I, Herzel H, et al. Functioning and robustness of a bacterial circadian clock. Mol Syst Biol. 2007;3:90. Available from: http://www.dx.doi.org/10.1038/msb4100128 .

    Google Scholar 

  7. Giebultowicz JM. Molecular mechanism and cellular distribution of insect circadian clocks. Annu Rev Entomol. 2000;45:769–793. Available from: http://www.dx.doi.org/10.1146/annurev.ento.45.1.769 .

    Google Scholar 

  8. Reppert SM, Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001;63:647–676.

    Google Scholar 

  9. Leloup JC, Goldbeter A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J Biol Rhythms. 1998 Feb;13(1):70–87.

    Google Scholar 

  10. Shaik OS, Sager S, Slaby O, Lebiedz D. Phase tracking and restoration of circadian rhythms by model-based optimal control. IET Syst Biol. 2008 Jan;2(1): 16–23.

    Google Scholar 

  11. Rehberg M, Lebiedz D. Phase Tracking of Circadian Rhythm by Model-Based Optimal Control. In: Proceedings of the Third International Conference on Foundations of Systems Biology in Engineering (FOSBE 2009); 2009.

    Google Scholar 

  12. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000 Jan;403(6767):335–338. Available from: http://www.dx.doi.org/10.1038/35002125 .

  13. Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable synthetic ­mammalian oscillator. Nature. 2009 Jan;457(7227):309–312. Available from: http://www.dx.doi.org/10.1038/nature07 616.

    Google Scholar 

  14. Rand DA, Shulgin BV, Salazar D, Millar AJ. Design principles underlying circadian clocks. J R Soc Interface. 2004 Nov;1(1): 119–130. Available from: http://www.dx.doi.org/10.1098/rsif.2004.0014 .

  15. Polak E. Optimization: Algorithms and Consistent Approximations. Springer; 1997.

    Google Scholar 

  16. Shimizu K, Aiyoshi E. Necessary conditions for min-max problems and algorithms by a relaxation procedure. IEEE T Automat Contr. 1980;25(1):62–66.

    Google Scholar 

  17. Skanda D, Lebiedz D. An optimal experimental design approach to model discrimination in dynamic biochemical systems. Bioinformatics. 2010;26:939–45.

    Google Scholar 

  18. Pronzato L, Walter E. Robust experiment design via maximin optimization. Math Biosci. 1988;89(2): 161 – 176. Available from: http://www.sciencedirect.com/science/article/B6VHX-45FKF3H-4W/2/2d1d3988042e1e36ffb9cafde61c1634 .

  19. Wächter A. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering. Carnegie Mellon University; 2002.

    Google Scholar 

  20. Wächter A, Biegler LT. On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming. Math Program. 2006;106(1):25–57.

    Google Scholar 

  21. HSL. A Collection of Fortran codes for large-scale scientific computation.; 2007. Available from: http://www.hsl.rl.ac.uk .

  22. Bell BM, Burke JV. Algorithmic Differentiation of Implicit Functions and Optimal Values. In: Bischof CH, Bücker HM, Hovland PD, Naumann U, Utke J, editors. Advances in Automatic Differentiation. Springer; 2008. p. 67–77.

    Google Scholar 

  23. Bell BM. Automatic differentiation software CppAD.; 2010. Available from: http://www.coin-or.org/CppAD/ .

  24. Byrne GD, Hindmarsh AC. A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations. ACM Transactions on Mathematical Software. 1975;1(1):71–96.

    Google Scholar 

  25. Calvo M, Montijano JI, Rández L. On the change of step size in multistep codes. Numer Algorithms. 1993;4:283–304.

    Google Scholar 

  26. Stelling J, Gilles ED, Doyle FJ. Robustness properties of circadian clock architectures. Proc Natl Acad Sci USA. 2004 Sep;101(36):13210–13215.

    Google Scholar 

  27. Lebiedz D. Exploiting optimal control for ­target-oriented manipulation of (bio)chemical systems: a model-based approach to specific modification of self-organized dynamics. Int J Mod Phys B. 2005 August; 19(25):3763–3798.

    Google Scholar 

  28. Lebiedz D, Brandt-Pollmann U. Manipulation of self-aggregation patterns and waves in reaction-diffusion system by optimal boundary control strategies. Phys Rev Lett. 2003 November;91(20):208301.

    Google Scholar 

  29. Lebiedz D, Sager S, Bock HG, Lebiedz P. Annihilation of limit cycle oscillations by identification of critical phase resetting stimuli via mixed-integer optimal control methods. Phys Rev Lett. 2005 September;95:108303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Lebiedz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lebiedz, D., Rehberg, M., Skanda, D. (2012). Robust Optimal Design of Synthetic Biological Networks. In: Weber, W., Fussenegger, M. (eds) Synthetic Gene Networks. Methods in Molecular Biology, vol 813. Humana Press. https://doi.org/10.1007/978-1-61779-412-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-412-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-411-7

  • Online ISBN: 978-1-61779-412-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics