Skip to main content

Synthetic Gene Networks as Blueprint for Smart Hydrogels

  • Protocol
  • First Online:
Synthetic Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 813))

Abstract

The rapidly emerging ability to design and construct synthetic gene networks in mammalian cells is based on the availability of mutually compatible genetic switches that enable the time-dependent induction of transgene expression in response to the dose of an externally applied stimulus. As these genetic switches are inherently compatible with mammalian cell physiology, they are as well predestined to control the functionality of cell-free synthetic devices within an overall physiologic background. In this chapter, we describe how a genetic switch that was originally designed for gene therapeutic studies can be applied in materials science to design and construct a biohybrid hydrogel that can be used to release a therapeutic growth factor in response to an externally applied stimulus for controlling cell fate and function in a time- and space-resolved manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lutolf, M. P., and Hubbell, J. A. (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat Biotechnol 23, 47–55.

    Article  PubMed  CAS  Google Scholar 

  2. Lendlein, A., Jiang, H., Junger, O., and Langer, R. (2005) Light-induced shape-memory polymers, Nature 434, 879–882.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, C., Stewart, R. J., and Kopecek, J. (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains, Nature 397, 417–420.

    Article  PubMed  CAS  Google Scholar 

  4. Miyata, T., Asami, N., and Uragami, T. (1999) A reversibly antigen-responsive hydrogel, Nature 399, 766–769.

    Article  PubMed  CAS  Google Scholar 

  5. Rivera, V. M., Wang, X., Wardwell, S., Courage, N. L., Volchuk, A., Keenan, T., Holt, D. A., Gilman, M., Orci, L., Cerasoli, F., Jr., Rothman, J. E., and Clackson, T. (2000) Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum, Science 287, 826–830.

    Article  PubMed  CAS  Google Scholar 

  6. Rollins, C. T., Rivera, V. M., Woolfson, D. N., Keenan, T., Hatada, M., Adams, S. E., Andrade, L. J., Yaeger, D., van Schravendijk, M. R., Holt, D. A., Gilman, M., and Clackson, T. (2000) A ligand-reversible dimerization system for controlling protein-protein interactions, Proc Natl Acad Sci USA 97, 7096–7101.

    Article  PubMed  CAS  Google Scholar 

  7. Bayle, J. H., Grimley, J. S., Stankunas, K., Gestwicki, J. E., Wandless, T. J., and Crabtree, G. R. (2006) Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity, Chem Biol 13, 99–107.

    Article  PubMed  CAS  Google Scholar 

  8. Kämpf, M.M., Christen, E.H., Ehrbar, M., Daoud-El Baba, M., Charpin-El Hamri, G., Fussenegger, M., and Weber, W. (2010) A Gene Therapy Technology-Based Biomaterial for the Trigger-Inducible Release of Biopharmaceuticals in Mice, Adv Funct Mater 20, 2534–2538.

    Article  Google Scholar 

  9. Ehrbar, M., Djonov, V. G., Schnell, C., Tschanz, S. A., Martiny-Baron, G., Schenk, U., Wood, J., Burri, P. H., Hubbell, J. A., and Zisch, A. H. (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth, Circ Res 94, 1124–1132.

    Article  PubMed  CAS  Google Scholar 

  10. Maina, C. V., Riggs, P. D., Grandea, A. G., 3rd, Slatko, B. E., Moran, L. S., Tagliamonte, J. A., McReynolds, L. A., and Guan, C. D. (1988) An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein, Gene 74, 365–373.

    Article  PubMed  CAS  Google Scholar 

  11. Smith, D. B., and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase, Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of MMK was supported by the GEBERT RÜF STIFTUNG (Grant No. GRS-042/07) and the work of WW was supported by the Excellence Initiative of the German Federal and State Governments (EXC 294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kämpf, M.M., Weber, W. (2012). Synthetic Gene Networks as Blueprint for Smart Hydrogels. In: Weber, W., Fussenegger, M. (eds) Synthetic Gene Networks. Methods in Molecular Biology, vol 813. Humana Press. https://doi.org/10.1007/978-1-61779-412-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-412-4_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-411-7

  • Online ISBN: 978-1-61779-412-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics