Skip to main content

Using Transcription Machinery Engineering to Elicit Complex Cellular Phenotypes

  • Protocol
  • First Online:
Synthetic Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 813))

Abstract

Cellular hosts are widely used for the production of chemical compounds, including pharmaceutics, fuels, and specialty chemicals. However, common metabolic engineering techniques are limited in their capacity to elicit multigenic, complex phenotypes. These phenotypes can include non-pathway-based traits, such as tolerance and productivity. Global transcription machinery engineering (gTME) is a generic methodology for eliciting these complex cellular phenotypes. In gTME, dominant mutant alleles of a transcription-related protein are screened for their ability to reprogram cellular metabolism and regulation, resulting in a unique and desired phenotype. gTME has been successfully applied to both prokaryotic and eukaryotic systems, resulting in improved environmental tolerances, metabolite production, and substrate utilization. The underlying principle involves creating mutant libraries of transcription factors, screening for a desired phenotype, and iterating the process in a directed evolution fashion. The successes of this approach and details for its implementation and application are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephanopoulos, G., Alper, H., and Moxley, J. (2004) Exploiting biological complexity for strain improvement through systems biology, Nat Biotechnol 22, 1261–1267.

    Article  PubMed  CAS  Google Scholar 

  2. Tyo, K. E., Alper, H. S., and Stephanopoulos, G. N. (2007) Expanding the metabolic engineering toolbox: more options to engineer cells, Trends Biotechnol 25, 132–137.

    Article  PubMed  CAS  Google Scholar 

  3. Parekh, S., Vinci, V. A., and Strobel, R. J. (2000) Improvement of microbial strains and fermentation processes, Appl Microbiol Biotechnol 54, 287–301.

    Article  PubMed  CAS  Google Scholar 

  4. Patnaik, R. (2008) Engineering complex phenotypes in industrial strains, Biotechnol Prog 24, 38–47.

    Article  PubMed  CAS  Google Scholar 

  5. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., and Stephanopoulos, G. (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production, Science 314, 1565–1568.

    Article  PubMed  CAS  Google Scholar 

  6. Alper, H., and Stephanopoulos, G. (2007) Global transcription machinery engineering: A new approach for improving cellular phenotype, Metabolic Engineering 9, 258–267.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, H., Yan, M., Lai, C., Xu, L., and Ouyang, P. (2010) gTME for improved xylose fermentation of Saccharomyces cerevisiae, Appl Biochem Biotechnol 160, 574–582.

    Article  PubMed  CAS  Google Scholar 

  8. Klein-Marcuschamer, D., and Stephanopoulos, G. (2008) Assessing the potential of mutational strategies to elicit new phenotypes in indus-trial strains, Proc Natl Acad Sci USA 105, 2319–2324.

    Article  PubMed  CAS  Google Scholar 

  9. Gill, R. T., Wildt, S., Yang, Y. T., Ziesman, S., and Stephanopoulos, G. (2002) Genome-wide screening for trait conferring genes using DNA microarrays, Proc Natl Acad Sci USA 99, 7033–7038.

    Article  PubMed  CAS  Google Scholar 

  10. Gall, S., Lynch, M. D., Sandoval, N. R., and Gill, R. T. (2008) Parallel mapping of genotypes to phenotypes contributing to overall biological fitness, Metab Eng 10, 382–393.

    Article  PubMed  CAS  Google Scholar 

  11. Warnecke, T. E., Lynch, M. D., Karimpour-Fard, A., Sandoval, N., and Gill, R. T. (2008) A genomics approach to improve the analysis and design of strain selections, Metab Eng 10, 154–165.

    Article  PubMed  CAS  Google Scholar 

  12. Jin, Y. S., and Stephanopoulos, G. (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli, Metab Eng 9, 337–347.

    Article  PubMed  CAS  Google Scholar 

  13. Kang, M. J., Lee, Y. M., Yoon, S. H., Kim, J. H., Ock, S. W., Jung, K. H., Shin, Y. C., Keasling, J. D., and Kim, S. W. (2005) Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method, Biotechnol Bioeng 91, 636–642.

    Article  PubMed  CAS  Google Scholar 

  14. Hemmi, H., Ohnuma, S., Nagaoka, K., and Nishino, T. (1998) Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early genes in isoprenoid biosynthesis, J Biochem 123, 1088–1096.

    PubMed  CAS  Google Scholar 

  15. Alper, H., Miyaoku, K., and Stephanopoulos, G. (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets, Nat Biotechnol 23, 612–616.

    Article  PubMed  CAS  Google Scholar 

  16. Winterberg, K. M., Luecke, J., Bruegl, A. S., and Reznikoff, W. S. (2005) Phenotypic screening of Escherichia coli K-12 Tn5 insertion libraries, using whole-genome oligonucleotide microarrays, Appl Environ Microbiol 71, 451–459.

    Article  PubMed  CAS  Google Scholar 

  17. Badarinarayana, V., Estep, P. W., 3rd, Shendure, J., Edwards, J., Tavazoie, S., Lam, F., and Church, G. M. (2001) Selection analyses of insertional mutants using subgenic-resolution arrays, Nat Biotechnol 19, 1060–1065.

    Article  PubMed  CAS  Google Scholar 

  18. Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W. P., Ryan, C. M., and del Cardayre, S. (2002) Genome shuffling of Lactobacillus for improved acid tolerance, Nat Biotechnol 20, 707–712.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, Y., Li, Y., Pei, X., Yu, L., and Feng, Y. (2007) Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus, J Biotechnol 129, 510–515.

    Article  PubMed  CAS  Google Scholar 

  20. Lynch, M. D., Warnecke, T., and Gill, R. T. (2007) SCALEs: multiscale analysis of library enrichment, Nat Methods 4, 87–93.

    Article  PubMed  CAS  Google Scholar 

  21. Warner, J. R., Reeder, P. J., Karimpour-Fard, A., Woodruff, L. B., and Gill, R. T.(2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides, Nat Biotechnol 28 8:856–862.

    Article  PubMed  CAS  Google Scholar 

  22. Schmeisser, C., Steele, H., and Streit, W. R. (2007) Metagenomics, biotechnology with non-culturable microbes, Appl Microbiol Biotechnol 75, 955–962.

    Article  PubMed  CAS  Google Scholar 

  23. Klein-Marcuschamer, D., Santos, C. N., Yu, H., and Stephanopoulos, G. (2009) Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes, Appl Environ Microbiol 75, 2705–2711.

    Article  PubMed  CAS  Google Scholar 

  24. Yu, H., Tyo, K., Alper, H., Klein-Marcuschamer, D., and Stephanopoulos, G. (2008) A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors, Biotechnol Bioeng 101, 788–796.

    Article  PubMed  CAS  Google Scholar 

  25. Arnold, F. H., and Georgiou, G. (2003) Directed evolution library creation : methods and protocols, Humana Press, Totowa, N.J.

    Google Scholar 

  26. Zaccolo, M., Williams, D. M., Brown, D. M., and Gherardi, E. (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues, J Mol Biol 255, 589–603.

    Article  PubMed  CAS  Google Scholar 

  27. Cadwell, R. C., and Joyce, G. F. (1992) Randomization of genes by PCR mutagenesis, PCR Methods Appl 2, 28–33.

    PubMed  CAS  Google Scholar 

  28. Alper, H., Fischer, C., Nevoigt, E., and Stephanopoulos, G. (2005) Tuning genetic control through promoter engineering, Proc Natl Acad Sci USA 102, 12678–12683.

    Article  PubMed  CAS  Google Scholar 

  29. Yoon, S. H., Moon, T. S., Iranpour, P., Lanza, A. M., and Prather, K. J. (2009) Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tume-faciens strain C58, J Bacteriol 191, 1565–1573.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal S. Alper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lanza, A.M., Alper, H.S. (2012). Using Transcription Machinery Engineering to Elicit Complex Cellular Phenotypes. In: Weber, W., Fussenegger, M. (eds) Synthetic Gene Networks. Methods in Molecular Biology, vol 813. Humana Press. https://doi.org/10.1007/978-1-61779-412-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-412-4_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-411-7

  • Online ISBN: 978-1-61779-412-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics