Skip to main content

Expressed Protein Modifications: Making Synthetic Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 813))

Abstract

Techniques to manipulate cellular gene expression such that amino acid analogs not encoded by the genetic code are incorporated into a polypeptide chain have recently gained increasing interest. The so-called noncanonical amino acids often have unusual properties that can be translated into target proteins by reprogrammed ribosomal protein synthesis. Residue-specific substitution of a specific canonical amino acid by its analogs provokes global effects in the resulting protein congeners that include improved stability or catalytic activity, reduced redox sensitivity, as well as altered spectral properties. Thus, the approach holds great promise for the engineering of synthetic proteins.

This contribution describes a protocol for the incorporation of a noncanonical amino acid into a target protein expressed in an appropriate amino acid auxotrophic E. coli strain.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hammer, K., Mijakovic, I., and Jensen, P. R. (2006) Synthetic promoter libraries – tuning of gene expression, Trends Biotechnol 24, 53–55.

    Article  PubMed  CAS  Google Scholar 

  2. Mijakovic, I., Petranovic, D., and Jensen, P. R. (2005) Tunable promoters in systems biology, Curr Opin Biotechnol 16, 329–335.

    Article  PubMed  CAS  Google Scholar 

  3. Braatsch, S., Helmark, S., Kranz, H., Koebmann, B., and Jensen, P. R. (2008) Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning, Biotechniques 45, 335–337.

    Article  PubMed  CAS  Google Scholar 

  4. Marzi, S., Fechter, P., Chevalier, C., Romby, P., and Geissmann, T. (2008) RNA switches regulate initiation of translation in bacteria, Biol Chem 389, 585–598.

    Article  PubMed  CAS  Google Scholar 

  5. Hartig, J. S. (2007) Teaching bacteria new tricks – with RNA switches, Angew Chem Int Ed Engl 46, 7741–7743.

    Article  PubMed  Google Scholar 

  6. Zhang, J., Lau, M. W., and Ferré-D’Amaré, A. R. (2010) Ribozymes and riboswitches: modulation of RNA function by small molecules, Biochemistry 49, 9123–9131.

    Google Scholar 

  7. Malys, N., and McCarthy, J. (2011) Translation initiation: variations in the mechanism can be anticipated, Cell Mol Life Sci 68, 991–1003.

    Article  PubMed  CAS  Google Scholar 

  8. Filbin, M. E., and Kieft, J. S. (2009) Toward a structural understanding of IRES RNA function, Curr Opin Struct Biol 19, 267–276.

    Article  PubMed  CAS  Google Scholar 

  9. Wiltschi, B., and Budisa, N. (2006) Basic requirements for reprogramming intracellular protein translation, In Molecular Interactions – Bringing Chemistry to Life: Proceedings of the International Beilstein Workshop (Hicks, M. G., and Kettner, C., Eds.), pp 93–109, Beilstein-Institut zur Förderung der Chemischen Wissenschaften, May 15th – 19th, Bozen, Italy.

    Google Scholar 

  10. Young, T. S., and Schultz, P. G. (2010) Beyond the canonical 20 amino acids: expanding the genetic lexicon, J Biol Chem 285, 11039–11044.

    Article  PubMed  CAS  Google Scholar 

  11. Liu, C. C., and Schultz, P. G. (2010) Adding new chemistries to the genetic code, Annu Rev Biochem 79, 413–444.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Q., Parrish, A. R., and Wang, L. (2009) Expanding the genetic code for biological studies, Chem Biol 16, 323–336.

    Article  PubMed  CAS  Google Scholar 

  13. Hassan, A. Q. (2008) Site-specific incorporation of chemical probes into proteins for NMR, ACS Chem Biol 3, 524–526.

    Article  PubMed  CAS  Google Scholar 

  14. Lepthien, S., Merkel, L., and Budisa, N. (2010) In vivo double and triple labeling of proteins using synthetic amino acids, Angew Chem Int Ed Engl 49, 5446–5450.

    Article  PubMed  CAS  Google Scholar 

  15. Merkel, L., Schauer, M., Antranikian, G., and Budisa, N. (2010) Parallel incorporation of different fluorinated amino acids: on the way to “teflon” proteins, Chembiochem 11, 1505–1507.

    Article  PubMed  CAS  Google Scholar 

  16. Arnold, U. (2009) Incorporation of non-natural modules into proteins: structural features beyond the genetic code, Biotechnol Lett 31, 1129–1139.

    Article  PubMed  CAS  Google Scholar 

  17. Rodgers, K. J., and Shiozawa, N. (2008) Misincorporation of amino acid analogues into proteins by biosynthesis, Int J Biochem Cell Biol 40, 1452–1466.

    Article  PubMed  CAS  Google Scholar 

  18. Link, A. J., and Tirrell, D. A. (2005) Reassignment of sense codons in vivo, Methods 36, 291–298.

    Article  PubMed  CAS  Google Scholar 

  19. Connor, R. E., and Tirrell, D. A. (2007) Non-canonical amino acids in protein polymer design, Polymer Rev 47, 9–28.

    Article  CAS  Google Scholar 

  20. Budisa, N. (2004) Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire, Angew Chem Int Ed Engl 43, 6426–6463.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson, J. A., Lu, Y. Y., Van Deventer, J. A., and Tirrell, D. A. (2010) Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications, Curr Opin Chem Biol 14, 774–780.

    Article  PubMed  CAS  Google Scholar 

  22. Hoesl, M. G., Acevedo-Rocha, C. G., Nehring, S., Royter, M., Wolschner, C., Wiltschi, B., Budisa, N., and Antranikian, G. (2011) Lipase congeners designed by genetic code engineering, ChemCatChem 3, 213–221.

    Article  CAS  Google Scholar 

  23. Budisa, N. (2006) Engineering the genetic code – expanding the amino acid repertoire for the design of novel proteins, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim.

    Google Scholar 

  24. Rosenthal, G. (1982) Plant nonprotein amino and imino acids: biological, biochemical and toxicological properties, Academic Press, New York.

    Google Scholar 

  25. Hunt, S. (1985) The non-protein amino acids, In Chemistry and biochemistry of the amino acids (Barrett, G., Ed.), pp 55–137, Chapman and Hall, London.

    Google Scholar 

  26. Shoulders, M. D., Satyshur, K. A., Forest, K. T., and Raines, R. T. (2010) Stereoelectronic and steric effects in side chains preorganize a protein main chain, Proc Natl Acad Sci USA 107, 559–564.

    Article  PubMed  CAS  Google Scholar 

  27. Budisa, N., Minks, C., Medrano, F. J., Lutz, J., Huber, R., and Moroder, L. (1998) Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: Structure and stability of the per-thiaproline mutant of annexin V, Proc Natl Acad Sci USA 95, 455–459.

    Article  PubMed  CAS  Google Scholar 

  28. Pal, P. P., Bae, J. H., Azim, K. M., Hess, P., Friedrich, R., Huber, R., Moroder, L., and Budisa, N. (2005) Structural and spectral response of Aequorea victoria green fluorescent proteins to chromophore fluorination, Biochemistry 44, 3663–3672.

    Article  PubMed  CAS  Google Scholar 

  29. Minks, C., Huber, R., Moroder, L., and Budisa, N. (1999) Atomic mutations at the single tryptophan residue of human recombinant annexin V: effects on structure, stability, and activity, Biochemistry 38, 10649–10659.

    Article  PubMed  CAS  Google Scholar 

  30. Hoesl, M. G., Larregola, M., Cui, H., and Budisa, N. (2010) Azatryptophans as tools to study polarity requirements for folding of green fluorescent protein, J Pept Sci 16, 589–595.

    Article  PubMed  CAS  Google Scholar 

  31. Kurschus, F. C., Pal, P. P., Bäumler, P., Jenne, D. E., Wiltschi, B., and Budisa, N. (2009) Gold fluorescent annexin A5 as a novel apoptosis detection tool, Cytometry A 75A, 626–633.

    Article  CAS  Google Scholar 

  32. Budisa, N., and Pal, P. P. (2004) Designing novel spectral classes of proteins with a tryptophan-expanded genetic code, Biol Chem 385, 893–904.

    Article  PubMed  CAS  Google Scholar 

  33. Bae, J. H., Rubini, M., Jung, G., Wiegand, G., Seifert, M. H. J., Azim, M. K., Kim, J.-S., Zumbusch, A., Holak, T. A., Moroder, L., Huber, R., and Budisa, N. (2003) Expansion of the genetic code enables design of a novel “gold” class of green fluorescent proteins, J Mol Biol 328, 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  34. Beatty, K. E., Fisk, J. D., Smart, B. P., Lu, Y. Y., Szychowski, J., Hangauer, M. J., Baskin, J. M., Bertozzi, C. R., and Tirrell, D. A. (2010) Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition, Chembiochem 11, 2092–2095.

    Article  PubMed  CAS  Google Scholar 

  35. Dieterich, D. C., Hodas, J. J. L., Gouzer, G., Shadrin, I. Y., Ngo, J. T., Triller, A., Tirrell, D. A., and Schuman, E. M. (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons, Nat Neurosci 13, 897–905.

    Article  PubMed  CAS  Google Scholar 

  36. Beatty, K. E., and Tirrell, D. A. (2008) Two-color labeling of temporally defined protein populations in mammalian cells, Bioorg Med Chem Lett 18, 5995–5999.

    Article  PubMed  CAS  Google Scholar 

  37. Yoo, T. H., Link, A. J., and Tirrell, D. A. (2007) Evolution of a fluorinated green fluorescent protein, Proc Natl Acad Sci USA 104, 13887–13890.

    Article  PubMed  CAS  Google Scholar 

  38. Lepthien, S., Hoesl, M. G., Merkel, L., and Budisa, N. (2008) Azatryptophans endow proteins with intrinsic blue fluorescence, Proc Natl Acad Sci USA 105, 16095–16100.

    Article  PubMed  CAS  Google Scholar 

  39. Wolschner, C., Giese, A., Kretzschmar, H. A., Huber, R., Moroder, L., and Budisa, N. (2009) Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein, Proc Natl Acad Sci USA 106, 7756–7761.

    Article  PubMed  CAS  Google Scholar 

  40. Budisa, N., Rubini, M., Bae, J. H., Weyher, E., Wenger, W., Golbik, R., Huber, R., and Moroder, L. (2002) Global replacement of tryptophan with aminotryptophans generates non-invasive protein-based optical pH sensors, Angew Chem Int Ed Engl 41, 4066–4069.

    Article  PubMed  CAS  Google Scholar 

  41. Steiner, T., Hess, P., Bae, J. H., Wiltschi, B., Moroder, L., and Budisa, N. (2008) Synthetic biology of proteins: tuning GFPs folding and stability with fluoroproline, PLoS ONE 3, e1680.

    Article  PubMed  Google Scholar 

  42. Tang, Y., and Tirrell, D. A. (2001) Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host, J Am Chem Soc 123, 11089–11090.

    Article  PubMed  CAS  Google Scholar 

  43. Montclare, J. K., Son, S., Clark, G. A., Kumar, K., and Tirrell, D. A. (2009) Biosynthesis and stability of coiled-coil peptides containing (2 S,4R)-5,5,5-trifluoroleucine and (2 S,4 S)-5,5,5-trifluoroleucine, Chembiochem 10, 84–86.

    Article  PubMed  CAS  Google Scholar 

  44. Budisa, N., Wenger, W., and Wiltschi, B. (2010) Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris, Mol Biosyst 6, 1630–1639.

    Article  PubMed  CAS  Google Scholar 

  45. Cirino, P. C., Tang, Y., Takahashi, K., Tirrell, D. A., and Arnold, F. H. (2003) Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity, Biotechnol Bioeng 83, 729–734.

    Article  PubMed  CAS  Google Scholar 

  46. Beiboer, S. H. W., Berg, B. V. D., Dekker, N., Cox, R. C., and Verheij, H. M. (1996) Incorporation of an unnatural amino acid in the active site of porcine pancreatic phospholipase A2. Substitution of histidine by l,2,4-triazole-3-alanine yields an enzyme with high activity at acidic pH, Protein Eng 9, 345–352.

    Article  PubMed  CAS  Google Scholar 

  47. Parsons, J. F., Xiao, G., Gilliland, G. L., and Armstrong, R. N. (1998) Enzymes harboring unnatural amino acids: mechanistic and structural analysis of the enhanced catalytic activity of a glutathione transferase containing 5-fluorotryptophan, Biochemistry 37, 6286–6294.

    Article  PubMed  CAS  Google Scholar 

  48. Anfinsen, C. B., and Corley, L. G. (1969) An active variant of staphylococcal nuclease containing norleucine in place of methionine, J Biol Chem 244, 5149–5152.

    PubMed  CAS  Google Scholar 

  49. Liu, X., Silks, L. A., Liu, C., Ollivault-Shiflett, M., Huang, X., Li, J., Luo, G., Hou, Y.-M., Liu, J., and Shen, J. (2009) Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency, Angew Chem Int Ed Engl 48, 2020–2023.

    Article  PubMed  CAS  Google Scholar 

  50. Fowden, L., Lewis, D., and Tristram, H. (1967) Toxic amino acids: their action as antimetabolites, In Adv Enzymol Relat Areas Mol Biol (Nord, F., Ed.), pp 89–163, John Wiley & Sons, Inc.

    Google Scholar 

  51. Speicher, D. W. (2002) Mass spectrometry, Curr Protoc Protein Sci Chapter 16, Unit 16.11.

    Google Scholar 

  52. Studier, W. F., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes, In Methods Enzymol (David, V. G., Ed.), pp 60–89, Academic Press.

    Google Scholar 

  53. Studier, F. W., and Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes, J Mol Biol 189, 113–130.

    Article  PubMed  CAS  Google Scholar 

  54. Rosenberg, A. H., Lade, B. N., Dao-shan, C., Lin, S.-W., Dunn, J. J., and Studier, F. W. (1987) Vectors for selective expression of cloned DNAs by T7 RNA polymerase, Gene 56, 125–135.

    Article  PubMed  CAS  Google Scholar 

  55. Ayyadurai, N., Neelamegam, R., Nagasundarapandian, S., Edwardraja, S., Park, H., Lee, S., Yoo, T., Yoon, H., and Lee, S.-G. (2009) Importance of expression system in the production of unnatural recombinant proteins in Escherichia coli, Biotechnol. Bioprocess Eng. 14, 257–265.

    Article  CAS  Google Scholar 

  56. Kozak, M. (1983) Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles, Microbiol Rev 47, 1–45.

    PubMed  CAS  Google Scholar 

  57. Shine, J., and Dalgarno, L. (1974) The 3′-terminal sequence of Escherichia coli 16 S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites, Proc Natl Acad Sci USA 71, 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  58. Schmidt, T. G. M., and Skerra, A. (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins, Nat Protoc 2, 1528–1535.

    Article  PubMed  CAS  Google Scholar 

  59. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  60. Sophianopoulou, V., and Diallinas, G. (1995) Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis, FEMS Microbiol Rev 16, 53–75.

    Article  PubMed  CAS  Google Scholar 

  61. Budisa, N., Steipe, B., Demange, P., Eckerskorn, C., Kellermann, J., and Huber, R. (1995) High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli, Eur J Biochem 230, 788–796.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Katrin Biermann for recording the growth curve and the determination of the limiting tyrosine concentration shown in Fig. 2. This work was supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 33-720.830-6-04) to B. Wiltschi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Wiltschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wiltschi, B. (2012). Expressed Protein Modifications: Making Synthetic Proteins. In: Weber, W., Fussenegger, M. (eds) Synthetic Gene Networks. Methods in Molecular Biology, vol 813. Humana Press. https://doi.org/10.1007/978-1-61779-412-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-412-4_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-411-7

  • Online ISBN: 978-1-61779-412-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics