Skip to main content

Epigenetic Analysis: ChIP-chip and ChIP-seq

  • Protocol
  • First Online:
Next Generation Microarray Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 802))

Abstract

The access of transcription factors and the replication machinery to DNA is regulated by the epigenetic state of chromatin. In eukaryotes, this complex layer of regulatory processes includes the direct methylation of DNA, as well as covalent modifications to histones. Using next-generation sequencers, it is now possible to obtain profiles of epigenetic modifications across a genome using chromatin immunoprecipitation followed by sequencing (ChIP-seq). This technique permits the detection of the binding of proteins to specific regions of the genome with high resolution. It can be used to determine the target sequences of transcription factors, as well as the positions of histones with specific modification of their N-terminal tails. Antibodies that selectively bind methylated DNA may also be used to determine the position of methylated cytosines. Here, we present a data analysis pipeline for processing ChIP-seq data, and discuss the limitations and idiosyncrasies of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  2. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1:179–185.

    Article  PubMed  CAS  Google Scholar 

  3. Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360.

    Article  PubMed  CAS  Google Scholar 

  4. Valouev A, Johnson DS, Sundquist A et al (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5:829–834.

    Article  PubMed  CAS  Google Scholar 

  5. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141.

    Article  PubMed  CAS  Google Scholar 

  6. Cock PJ, Fields CJ, Goto N et al (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771.

    Article  PubMed  CAS  Google Scholar 

  7. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.

    Article  PubMed  Google Scholar 

  8. http://maq.sourceforge.net/.

  9. Li R, Li Y, Kristiansen K et al (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714.

    Article  PubMed  CAS  Google Scholar 

  10. Nicol JW, Helt GA, Blanchard SG Jr et al (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25:2730–2731.

    Article  PubMed  CAS  Google Scholar 

  11. Rhead B, Karolchik D, Kuhn RM et al (2010) The UCSC Genome Browser database: update 2010. Nucleic Acids Res 38:D613–619.

    Article  PubMed  CAS  Google Scholar 

  12. Clement NL, Snell Q, Clement MJ et al (2010) The GNUMAP algorithm: unbiased probabilistic mapping of oligonucleotides from next-generation sequencing. Bioinformatics 26:38–45.

    Article  PubMed  CAS  Google Scholar 

  13. Pevzner PA, Tang H (2001) Fragment assembly with double-barreled data. Bioinformatics 17:S225–233.

    Article  PubMed  Google Scholar 

  14. Auerbach RK, Euskirchen G, Rozowsky J et al (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci U S A 106:14926–14931.

    Article  PubMed  CAS  Google Scholar 

  15. Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560.

    Article  PubMed  CAS  Google Scholar 

  16. Benjamini Y, Drai D, Elmer G et al (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284.

    Article  PubMed  CAS  Google Scholar 

  17. Muir WM, Rosa GJ, Pittendrigh BR et al (2009) A mixture model approach for the analysis of small exploratory microarray experiments. Comput Stat Data Anal 53:1566–1576.

    Article  PubMed  Google Scholar 

  18. http://genome.ucsc.edu/.

  19. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219.

    Article  PubMed  CAS  Google Scholar 

  20. http://genomes.mcdb.ucla.edu.

  21. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137.

    Article  PubMed  Google Scholar 

  22. Spyrou C, Stark R, Lynch AG et al (2009) BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinformatics 10:299.

    Article  PubMed  Google Scholar 

  23. http://liulab.dfci.harvard.edu/CEAS/.

  24. Chin MH, Mason MJ, Xie W et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–123.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Bernard L. Mirkin for development of the drug-resistant models of human neuroblastoma cells and for his advice and encouragement, and Jesse Moya for technical assistance. This work was supported by Broad Stem Cell Research Center and Institute of Genomics and Proteomics at UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Pellegrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pellegrini, M., Ferrari, R. (2012). Epigenetic Analysis: ChIP-chip and ChIP-seq. In: Wang, J., Tan, A., Tian, T. (eds) Next Generation Microarray Bioinformatics. Methods in Molecular Biology, vol 802. Humana Press. https://doi.org/10.1007/978-1-61779-400-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-400-1_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-399-8

  • Online ISBN: 978-1-61779-400-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics