Skip to main content

Using ChIPMotifs for De Novo Motif Discovery of OCT4 and ZNF263 Based on ChIP-Based High-Throughput Experiments

  • Protocol
  • First Online:
Next Generation Microarray Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 802))

Abstract

DNA motifs are short sequences varying from 6 to 25 bp and can be highly variable and degenerated. One major approach for predicting transcription factor (TF) binding is using position weight matrix (PWM) to represent information content of regulatory sites; however, when used as the sole means of identifying binding sites suffers from the limited amount of training data available and a high rate of false-positive predictions. ChIPMotifs program is a de novo motif finding tool developed for ChIP-based high-throughput data, and W-ChIPMotifs is a Web application tool for ChIPMotifs. It composes various ab initio motif discovery tools such as MEME, MaMF, Weeder and optimizes the significance of the detected motifs by using bootstrap re-sampling error estimation and a Fisher test. Using these techniques, we determined a PWM for OCT4 which is similar to canonical OCT4 consensus sequence. In a separate study, we also use de novo motif discovery to suggest that ZNF263 binds to a 24-nt site that differs from the motif predicted by the zinc finger code in several positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lockhart D, Dong H, Byrne MC et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  PubMed  CAS  Google Scholar 

  2. Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  3. Iyer VR, Horak CE, Scafe CS et al (2001) Genomic binding sites of the yeast cell-cycle transcription factor SBF and MBF. Nature 409:533–538

    Article  PubMed  CAS  Google Scholar 

  4. Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  PubMed  CAS  Google Scholar 

  5. Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428

    Article  PubMed  Google Scholar 

  6. Crawford GE, Davis S, Scacheri PC et al (2006) DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat Methods 3:503–509

    Article  PubMed  CAS  Google Scholar 

  7. Loh YH, Wu Q, Chew JL et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet 38:431–440

    Article  PubMed  CAS  Google Scholar 

  8. Pedersen JT, Moult J (1996) Genetic algorithms for protein structure prediction. Curr Opin Struct Biol 6:227–231

    Article  PubMed  CAS  Google Scholar 

  9. Lawrence C, Altschul S, Boguski M et al (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208–214

    Article  PubMed  CAS  Google Scholar 

  10. Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    PubMed  CAS  Google Scholar 

  11. Pavesi G, Mereghetti P, Mauri G et al (2004) Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32:W199-203

    Article  PubMed  CAS  Google Scholar 

  12. Liu J, Stormo GD (2008) Context-dependent DNA recognition code for C2H2 zinc-finger transcription factors. Bioinformatics 24:1850–1857

    Article  PubMed  CAS  Google Scholar 

  13. Kel AE, Gossling E, Reuter I et al (2003) MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31:3576–3579

    Article  PubMed  CAS  Google Scholar 

  14. Wingender E, Chen X, Hehl R et al (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28:316–319

    Article  PubMed  CAS  Google Scholar 

  15. Alkema WB, Johansson O, Lagergren J et al (2004) MSCAN: identification of functional clusters of transcription factor binding sites. Nucleic Acids Res 32:W195-198

    Article  PubMed  CAS  Google Scholar 

  16. Sandelin A, Alkema W, Engstrom P et al (2004). JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91-94

    Article  PubMed  CAS  Google Scholar 

  17. Weinmann AS, Yan PS, Oberley MJ et al (2002) Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Gene Dev 16:235–244

    Article  PubMed  CAS  Google Scholar 

  18. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  19. Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  PubMed  CAS  Google Scholar 

  20. Ettwiller L, Paten B, Ramialison M et al (2007) Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation. Nat Methods 4:563–565

    Article  PubMed  CAS  Google Scholar 

  21. Gordon DB, Nekludova L, McCallum et al (2005) TAMO: a flexible, object-oriented framework for analyzing transcriptional regulation using DNA-sequence motifs. Bioinformatics 21:3164–3165

    Google Scholar 

  22. Hong P, Liu XS, Zhou Q et al (2005) A boosting approach for motif modeling using ChIP-chip data. Bioinformatics 21:2636–2643

    Article  PubMed  CAS  Google Scholar 

  23. Jin VX, O’Geen H, Iyengar S et al (2007) Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res 17:807–817

    Article  PubMed  CAS  Google Scholar 

  24. Jin VX, Apostolos J, Nagisetty NS et al (2009) W-ChIPMotifs: a web application tool for de novo motif discovery from ChIP-based high-throughput data. Bioinformatics 25: 3191–3193

    Article  PubMed  CAS  Google Scholar 

  25. Jin VX, Leu YW, Liyanarachchi S et al (2004) Identifying estrogen receptor alpha target genes using integrated computational genomics and chromatin immunoprecipitation microarray. Nucleic Acids Res 32:6627–6635

    Article  PubMed  CAS  Google Scholar 

  26. Mahony S, Benos PV (2007) STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 35:W253-258

    Article  PubMed  Google Scholar 

  27. Badis G, Berger MF, Philippakis AA et al (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324:1720–1723

    Article  PubMed  CAS  Google Scholar 

  28. Frietze S, Lan X, Jin VX et al (2010) Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263 (ZNF263). J Biol Chem 285:1393–1403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor X. Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kennedy, B.A., Lan, X., Huang, T.HM., Farnham, P.J., Jin, V.X. (2012). Using ChIPMotifs for De Novo Motif Discovery of OCT4 and ZNF263 Based on ChIP-Based High-Throughput Experiments. In: Wang, J., Tan, A., Tian, T. (eds) Next Generation Microarray Bioinformatics. Methods in Molecular Biology, vol 802. Humana Press. https://doi.org/10.1007/978-1-61779-400-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-400-1_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-399-8

  • Online ISBN: 978-1-61779-400-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics