The KEGG Databases and Tools Facilitating Omics Analysis: Latest Developments Involving Human Diseases and Pharmaceuticals

  • Masaaki KoteraEmail author
  • Mika Hirakawa
  • Toshiaki Tokimatsu
  • Susumu Goto
  • Minoru Kanehisa
Part of the Methods in Molecular Biology book series (MIMB, volume 802)


In this chapter, we demonstrate the usability of the KEGG (Kyoto encyclopedia of genes and genomes) databases and tools, especially focusing on the visualization of the omics data. The desktop application KegArray and many Web-based tools are tightly integrated with the KEGG knowledgebase, which helps visualize and interpret large amount of data derived from high-throughput measurement techniques including microarray, metagenome, and metabolome analyses. Recently developed resources for human disease, drug, and plant research are also mentioned.

Key words

Pathway map KEGG orthology BRITE hierarchy KEGG API KegArray 



The computational resources were provided by the Bioinformatics Center, Institute for Chemical Research, Kyoto University. The KEGG project is supported by the Institute for Bioinformatics Research and Development of the Japan Science and Technology Agency, and a grant-in-aid for scientific research on the priority area “Comprehensive Genomics” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Kanehisa M, Goto S, Furumichi M et al (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355-360.PubMedCrossRefGoogle Scholar
  2. 2.
    KEGG Home Page.
  3. 3.
  4. 4.
    Fujibuchi W, Sato K, Ogata H et al (1998) KEGG and DBGET/LinkDB: Integration of biological relationships in divergent molecular biology data. In: Knowledge Sharing Across Biological and Medical Knowledge Based Systems. Technical Report WS-98-04, pp 35–40, AAAI Press.Google Scholar
  5. 5.
    Goto S, Okuno Y, Hattori M et al (2002) LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 30:402–404.PubMedCrossRefGoogle Scholar
  6. 6.
  7. 7.
    KEGG Markup Language.
  8. 8.
    Okuda S, Yamada T, Hamajima M et al (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36:W423-426.PubMedCrossRefGoogle Scholar
  9. 9.
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    KEGG EXPRESSION database.
  15. 15.
  16. 16.
  17. 17.
    Shigemizu D, Araki M, Okuda S et al (2009) Extraction and analysis of chemical modification patterns in drug development. J Chem Inf Model 49:1122–1129.PubMedCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Masoudi-Nejad A, Goto S, Jauregui R et al (2007) EGENES: transcriptome-based plant database of genes with metabolic pathway information and expressed sequence tag indices in KEGG. Plant Physiol 144:857–866.PubMedCrossRefGoogle Scholar
  20. 20.
    Wheelock CE, Wheelock AM, Kawashima S et al (2009) Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol Biosyst 5:588–602.PubMedCrossRefGoogle Scholar
  21. 21.
    Wheelock CE, Goto S, Yetukuri L et al (2009) Bioinformatics strategies for the analysis of lipids. Methods Mol Biol 580:339–368.PubMedCrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
  25. 25.
    Moriya Y, Itoh M, Okuda S et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182-185.PubMedCrossRefGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
  29. 29.
    Moriya Y, Shigemizu D, Hattori M et al (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38:W138-143.PubMedCrossRefGoogle Scholar
  30. 30.
    Kotera M, Okuno Y, Hattori M et al (2004) Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions. J Am Chem Soc 126:16487–16498.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamanishi Y, Hattori M, Kotera M et al (2009) E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs. Bioinformatics 25:i179-186.PubMedCrossRefGoogle Scholar
  32. 32.
    Hashimoto K, Kanehisa M (2008) KEGG GLYCAN for integrated analysis of pathways, genes, and structures. In: Taniguchi N, Suzuki A, Ito Y, Narimatsu H, Kawasaki T, Hase S (eds.) Experimental Glycoscience. pp 441–444, Springer.Google Scholar
  33. 33.
    Hattori M, Okuno Y, Goto S et al (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 125: 11853–11865.PubMedCrossRefGoogle Scholar
  34. 34.
    Hattori M, Tanaka N, Kanehisa M et al (2010) SIMCOMP/SUBCOMP: chemical structure search servers for network analyses. Nucleic Acids Res 38:W652-656.PubMedCrossRefGoogle Scholar
  35. 35.
    Aoki KF, Yamaguchi A, Ueda N et al (2004) KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 32:W267-272.PubMedCrossRefGoogle Scholar
  36. 36.
  37. 37.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Masaaki Kotera
    • 1
    Email author
  • Mika Hirakawa
    • 1
  • Toshiaki Tokimatsu
    • 1
  • Susumu Goto
    • 1
  • Minoru Kanehisa
    • 1
  1. 1.Bioinformatics Center, Institute for Chemical ResearchKyoto UniversityUjiJapan

Personalised recommendations