Advertisement

Identifying Differential Histone Modification Sites from ChIP‐seq Data

  • Han Xu
  • Wing‐Kin SungEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 802)

Abstract

Epigenetic modifications are critical to gene regulations and genome functions. Among different epigenetic modifications, it is of great interest to study the differential histone modification sites (DHMSs), which contribute to the epigenetic dynamics and the gene regulations among various cell-types or environmental responses. ChIP-seq is a robust and comprehensive approach to capture the histone modifications at the whole genome scale. By comparing two histone modification ChIP-seq libraries, the DHMSs are potentially identifiable. With this aim, we proposed an approach called ChIPDiff for the genome-wide comparison of histone modification sites identified by ChIP-seq (Xu, Wei, Lin et al., Bioinformatics 24:2344–2349, 2008). The approach employs a hidden Markov model (HMM) to infer the states of histone modification changes at each genomic location. We evaluated the performance of ChIPDiff by comparing the H3K27me3 modification sites between mouse embryonic stem cell (ESC) and neural progenitor cell (NPC). We demonstrated that the H3K27me3 DHMSs identified by our approach are of high sensitivity, specificity, and technical reproducibility. ChIPDiff was further applied to uncover the differential H3K4me3 and H3K36me3 sites between different cell states. The result showed significant correlation between the histone modification states and the gene expression levels.

Key words

ChIP-seq Epigenetic modification Differential histone modification site ChIPDiff Hidden Markov model 

References

  1. 1.
    Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nature Rev Mol Cell Biol 6:838–849CrossRefGoogle Scholar
  2. 2.
    Boyer LA, Plath K, Zeitlinger J et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353PubMedCrossRefGoogle Scholar
  3. 3.
    Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326PubMedCrossRefGoogle Scholar
  4. 4.
    Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nature Genet 39:157–158PubMedCrossRefGoogle Scholar
  5. 5.
    McGarvey KM, Fahrner JA, Greene E et al (2006) Silenced tumor suppressor genes reactivated by DNA demthylation do not return to a fully euchromatic chromatin state. Cancer Res 66:3541–3549PubMedCrossRefGoogle Scholar
  6. 6.
    Impey S, McCorkle SR, Cha-Molstad H et al (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054PubMedGoogle Scholar
  7. 7.
    Wei CL, Wu Q, Vega VB et al (2006) A global mapping of p53 transcription factor binding sites in the human genome. Cell 124:207–219PubMedCrossRefGoogle Scholar
  8. 8.
    Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genom Hum Genet 7:81–102CrossRefGoogle Scholar
  9. 9.
    Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502PubMedCrossRefGoogle Scholar
  11. 11.
    Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nature Methods 4:613–614PubMedCrossRefGoogle Scholar
  12. 12.
    Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560PubMedCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Quackenbush J. (2002) Microarray data normalization and transformation. Nature Genet 32:496–501PubMedCrossRefGoogle Scholar
  15. 15.
    Xu H, Wei CL, Lin F et al. (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics 24:2344–2349PubMedCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Conti L, Pollard SM, Gorba T et al (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283PubMedCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Bernstein BE, Kamal M, Lindblad-Toh K et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181PubMedCrossRefGoogle Scholar
  20. 20.
    Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4:651–657PubMedCrossRefGoogle Scholar
  21. 21.
    Gan Q, Yoshida T, McDonald OG et al (2007) Concise review: epigenetic mechanism contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cell 25:2–9CrossRefGoogle Scholar
  22. 22.
    Li W, Meyer CA, Liu XS (2005) A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics (ISMB2005) 21 Suppl 1:i274-i282Google Scholar
  23. 23.
    Welch LR (2003) Hidden Markov Models and the Baum-Welch Algorithm. IEEE Information Theory Society Newsletter 53:1–1Google Scholar
  24. 24.
    Guenther MG, Levine SS, Boyer LA et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao XD, Han X, Chew JL et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298PubMedCrossRefGoogle Scholar
  26. 26.
    Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–504PubMedCrossRefGoogle Scholar
  27. 27.
    Ding C, Cantor CR (2004) Quantitative analysis of nucleic acids – the last few years of progress. J of Biochem and Mol Bio 37:1–10CrossRefGoogle Scholar
  28. 28.
    Xu H, Handoko L, Wei X et al (2010) A Signal-noise Model for Significance Analysis of ChIP-seq with Negative Control. Bioinformatics 26:1199–1204PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Computational and Mathematical BiologyGenome Institute of SingaporeSingaporeSingapore
  2. 2.School of Computing, National University of SingaporeSingaporeSingapore

Personalised recommendations