Effective Non-linear Methods for Inferring Genetic Regulation from Time-Series Microarray Gene Expression Data

  • Junbai Wang
  • Tianhai TianEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 802)


Owing to the quick development of high-throughput techniques and the generation of various “omics” datasets, it creates a prospect of performing the study of genome-wide genetic regulatory networks. Here, we present a sophisticated modelling framework together with the corresponding inference methods for accurately estimating genetic regulation from time-series microarray data. By applying our non-linear model on human p53 microarray expression data, we successfully estimated the activities of transcription factor (TF) p53 as well as identified the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. Our quantitative model can not only be used to infer the regulatory relationship between TF and its downstream genes but also be applied to estimate the protein activities of TF from the expression levels of its target genes.

Key words

Microarray Genetic regulation Non-linear model Genetic algorithm Inference 


  1. 1.
    Sun N, Carroll RJ, Zhao H (2006) Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proc Natl Acad Sci USA 103:7988–7993.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang J, Cheung LW, Delabie J (2005) New probabilistic graphical models for genetic regulatory networks studies. J Biomed Inform. 38:443–455.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang J (2007) A new framework for identifying combinatorial regulation of transcription factors: A case study of the yeast cell cycle. J Biomed Inform. 40:707–725.PubMedCrossRefGoogle Scholar
  4. 4.
    de Jong H (2002) Modelling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 9:67–103.PubMedCrossRefGoogle Scholar
  5. 5.
    Barenco M, Tomescu D, Brewer D et al (2006) Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7:R25.PubMedCrossRefGoogle Scholar
  6. 6.
    Rogers S, Khanin R, Girolami M (2007) Bayesian model-based inference of transcription factor activity. BMC Bioinformatics 8:S2.PubMedCrossRefGoogle Scholar
  7. 7.
    Goutsias J, Kim S (2006) Stochastic transcriptional regulatory systems with time delay: a mean-field approximation. J. Comput. Biol. 13:1049–1076.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang J, Tian T (2010) Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53. BMC Bioinform. 11:36.CrossRefGoogle Scholar
  9. 9.
    Zhao RB, Gish K, Murphy M et al (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Deve. 14:981–993.Google Scholar
  10. 10.
    Wei CL, Wu Q, Vega VB et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219.PubMedCrossRefGoogle Scholar
  11. 11.
    Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang J, Bo TH, Jonassen I et al (2003) Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4:60.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu G, Loraine AE, Shigeta R et al (2003) NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res. 31:82–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Conesa A, Nueda MJ, Ferrer A et al (2006) maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22:1096–1102.PubMedCrossRefGoogle Scholar
  15. 15.
    Ma L, Wagner J, Rice JJ et al (2005) A plausible model for the digital response of p53 to DNA damage. Proc Natl Acad Sci USA 102:14266–14271.PubMedCrossRefGoogle Scholar
  16. 16.
    Chipperfield A, Fleming PJ, Pohlheim H (1994) A Genetic Algorithm Toolbox for MATLAB. Proc. Int. Conf. Sys. Engineering: p.200-207.Google Scholar
  17. 17.
    Kho PS, Wang Z, Zhuang L et al (2004) p53-regulated Transcriptional Program Associated with Genotoxic Stress-induced Apoptosis. J. Biol. Chem. 279:21183–21192.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu Q, Kirschmeier P, Hockenberry T et al (2002) Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J. Biol. Chem. 277:36329–36337.PubMedCrossRefGoogle Scholar
  19. 19.
    Kwon AT, Hoos HH, Ng R (2003) Inference of transcriptional regulation relationships from gene expression data. Bioinformatics 19:905–912.PubMedCrossRefGoogle Scholar
  20. 20.
    El-Deiry WS, Kern SE, Pietenpol JA et al (1992) Definition of a consensus binding site for p53. Nat Genet. 1:45–49.PubMedCrossRefGoogle Scholar
  21. 21.
    Aach J, Bulyk ML, Church GM et al (2001) Computational comparison of two draft sequences of the human genome. Nature 409:856–859.PubMedCrossRefGoogle Scholar
  22. 22.
    Moorman C, Sun LV, Wang J et al (2006) Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc Natl Acad Sci USA 103:12027–12032.PubMedCrossRefGoogle Scholar
  23. 23.
    Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res. 13:2467–2474.PubMedCrossRefGoogle Scholar
  24. 24.
    Tian T, Xu S, Gao J et al (2007) Simulated maximum likelihood method for estimating kinetic rates in genetic regulation. Bioinformatics 23:84–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PathologyOslo University Hospital, Radium HospitalMontebelloNorway
  2. 2.School of Mathematical SciencesMonash UniversityMelbourneAustralia

Personalised recommendations