Electrospinning Technology in Tissue Regeneration

  • Oscar Castaño
  • Mohamed Eltohamy
  • Hae-Won KimEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 811)


Electrospinning is one of the most versatile and effective tools to produce nanostructured fibers in the biomedical science fields. The nanofibrous structure with diameters from tens to hundreds of nanometers largely mimics the native extracellular matrix (ECM) of many tissues. Thus far, a range of compositions including polymers and ceramics and their composites/hybrids have been successfully applied for generating electrospun nanofibers. Different processing tools in electrospinning set-ups and assemblies are currently developed to tune the morphology and properties of nanofibers. Herein, we demonstrate the electrospinning process and the electrospun biomaterials for specific use in tissue regeneration with some examples, involving different material combinations and fiber morphologies.

Key words

Electrospinning Nanostructured fibers Nanofibers Polymer Composites Ceramic Tissue regeneration 



This work was supported by the WCU program through the NRF funded by the MEST, Korea (R31-10069). Dr. O. Castaño thanks the Ramón y Cajal programme of the MICINN.


  1. 1.
    Cooley, J.F. (1902) Apparatus for electrically dispersing fluids US Patent Specification, 692631.Google Scholar
  2. 2.
    Morton, W.J. (1902), Method of dispersing fluids US Patent Specification, 705691.Google Scholar
  3. 3.
    Formhals, A. (1934), Process and apparatus for preparing artificial threads US Patent Specification, 1975504.Google Scholar
  4. 4.
    Gilbert, W. (1628), De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure, London, Peter Short.Google Scholar
  5. 5.
    Gray, S., and Mortimer C. (1732), A letter concerning the electricity of water, Phil. Trans, 37, 227260.Google Scholar
  6. 6.
    Rayleigh, L. (1882), On the Equilibrium of Liquid Conducting Masses charged with Electricity, Philosophical Magazine, 14, 184186Google Scholar
  7. 7.
    Larmor J. (1898) Note on the complete scheme of electrodynamic equations of a moving material medium, and on electrostriction Proc. R. Soc, 63, 365372.CrossRefGoogle Scholar
  8. 8.
    Wilson C.T., and Taylor G.I. (1925), The bursting of soap bubbles in a uniform electric field, Proc. Cambridge Philos. Soc, 22, 728–730.CrossRefGoogle Scholar
  9. 9.
    Zeleny, J. (1917), Instability of electrified liquid surfaces”. Physical Review, 10, 1, 1–6.CrossRefGoogle Scholar
  10. 10.
    Zeleny J. (1914), The electrical discharge from liquid points and a hydrostatic method of measuring the electric intensity at their surfaces, Physical Review, 3, 2, 69–91.CrossRefGoogle Scholar
  11. 11.
    Nolan, J.J. (1926) Proc. R. Ir. Acad. Sect, A 37, 2839.Google Scholar
  12. 12.
    Macky W. A. (1931) Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields, Proceedings of the Royal Society of London, Series A 133 (822), 565–587.Google Scholar
  13. 13.
    Taylor, G. (1964) Disintegration of Water Droplets in an Electric Field, Proc. Roy. Soc. London, Ser. A 280, 1382, 383–397.Google Scholar
  14. 14.
    Doshi, J. and Reneker, D. H. (1995), Electrospinning process and applications of electrospun fibers, J. Electrost, 35, 151–160.CrossRefGoogle Scholar
  15. 15.
    Teo W.E., and Ramakrishna S. (2006), A review on electrospinning design and nanofibre assemblies, Nanotechnology, 17, R89–R106.CrossRefGoogle Scholar
  16. 16.
    Gunja N. J. (2006), Biodegradable Materials in Arthroscopy, Sports Medicine & Arthroscopy Review, 14, 3, 112–119.CrossRefGoogle Scholar
  17. 17.
    Liao, S., Li, B., Ma, Z., Wei, H., Chan, C., and Ramakrishna, S. (2006) Biomimetic electrospun nanofibers for tissue regeneration, Biomed. Mater, 1 R45.Google Scholar
  18. 18.
    Gómez, A., and Tang, K. (1994), Charge and fission of droplets in electrostatic sprays. Physics of Fluids, 6 (1), 404414.CrossRefGoogle Scholar
  19. 19.
    Yoshimoto, H., Shin, Y.M., Terai, H., and Vacanti, J. P. (2003), A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials, 24, 12, 2077–2082.CrossRefGoogle Scholar
  20. 20.
    Casper, C. L., Stephens, J.S., Tassi, N. G., Chase, D. B. and Rabolt, J. F. (2004) Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process, Macromolecules, 37, 2, 573–578.CrossRefGoogle Scholar
  21. 21.
    McGill, D.B. and Motto, J.D. (1974) An industrial outbreak of toxic hepatitits due to methylenedianiline, New England J Med, 291, 278–282.CrossRefGoogle Scholar
  22. 22.
    Gunatillake, P.A., and Adhikari, R. (2003) Biodegradable synthetic polymers for tissue engineering, Eur Cell Mater, 20, 5, 1–16.Google Scholar
  23. 23.
    Taylor, M.S., Daniels, A.U., Andriano, K.P., and Heller, J. (2004) Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater, 5, 151–157.CrossRefGoogle Scholar
  24. 24.
    Kim, H. W., Lee, H. H., and Knowles J. C. (2006), Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration, J Biomed Mater Res Part A, 79, 3, 643–649.CrossRefGoogle Scholar
  25. 25.
    Song, J.H., Kim, H.E., and Kim, H.W. (2008) Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration, J Mater Sci: Mater Med, 19, 8, 2925–2932.CrossRefGoogle Scholar
  26. 26.
    Song, J.H., Yoon B.H., Kim H.E., and Kim H.W. (2008), Bioactive and degradable hybridized nanofibers of gelatin-siloxane for bone regeneration, J Biomed Mater Res B 84A, 4, 875–884.CrossRefGoogle Scholar
  27. 27.
    Matthews, J.A., Wnek, G.E., Simpson D.G., and Bowlin, G.L., (2002), Electrospinning of collagen nanofibers, Biomacromolecules, 3, 232–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Oscar Castaño
    • 1
    • 2
  • Mohamed Eltohamy
    • 3
  • Hae-Won Kim
    • 3
    Email author
  1. 1.Institute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  2. 2.Networking Research Centre on Bioengineering, Biomaterials and NanomedicineCIBER-BBNBarcelonaSpain
  3. 3.Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonanSouth Korea

Personalised recommendations