Advertisement

Preparation of Polyelectrolyte Nanocomplexes Containing Recombinant Human Hepatocyte Growth Factor as Potential Oral Carriers for Liver Regeneration

  • Catarina Ribeiro
  • Ana Patrícia Neto
  • José das Neves
  • Maria Fernanda Bahia
  • Bruno SarmentoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 811)

Abstract

The large number of cytokines and growth factors implicated in the regulation of liver regeneration has led to the possibility of using these molecules in therapy, namely, in the case of recombinant human hepatocyte growth factor (rhHGF). The importance and potential clinical usefulness of rhHGF has been extensively studied and documented, with results suggesting that this molecule could be a powerful tool toward increased success in hepatic regenerative therapy. However, the peptidic nature of this drug presents several challenges toward its effective administration and targeting. The possibility of encapsulating rhHGF in dextran sulfate/chitosan nanoparticles to allow its oral administration and direct liver-targeting is discussed in this manuscript. Details of a rapid and simple method for the preparation of such rhHGF-loaded nanocomplexes are presented. Beyond the practical aspects of the method, characterization techniques and main experimental features of obtained nanocarriers are also briefly analyzed and discussed.

Key words

Hepatocyte growth factor Dextran sulfate Chitosan Insulin Oral administration Nanotechnology Regenerative medicine 

Notes

Acknowledgments

The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia, Portugal (PTDC/SAU-FCF/104492/2008 and SFRH/BPD/35996/2007).

References

  1. 1.
    Nakamura, T., Nawa, K., Ichihara, A., Kaise, N., and Nishino, T. (1987) Purification and subunit structure of hepatocyte growth factor from rat platelets, FEBS Lett 224, 311–316.CrossRefGoogle Scholar
  2. 2.
    Nakamura, T. (1991) Structure and function of hepatocyte growth factor, Prog. Growth Factor Res 3, 67–85.CrossRefGoogle Scholar
  3. 3.
    Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K., and Shimizu, S. (1989) Molecular cloning and expression of human hepatocyte growth factor, Nature 342, 440–443.CrossRefGoogle Scholar
  4. 4.
    Funakoshi, H., and Nakamura, T. (2003) Hepatocyte growth factor: from diagnosis to clinical applications, Clin Chim Acta 327, 1–23.CrossRefGoogle Scholar
  5. 5.
    Mizuno, S., and Nakamura, T. (2007) Hepatocyte growth factor: a regenerative drug for acute hepatitis and liver cirrhosis, Regen Med 2, 161–170.CrossRefGoogle Scholar
  6. 6.
    Taub, R. (2004) Liver regeneration: from myth to mechanism, Nat Rev Mol Cell Biol 5, 836–847.CrossRefGoogle Scholar
  7. 7.
    Cui, Y. L., Meng, M. B., Tang, H., Zheng, M. H., Wang, Y. B., Han, H. X., and Lei, X. Z. (2008) Recombinant human hepatocyte growth factor for liver failure, Contemp Clin Trials 29, 696–704.CrossRefGoogle Scholar
  8. 8.
    Jiang, W., Hiscox, S., Matsumoto, K., and Nakamura, T. (1999) Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer, Crit Rev Oncol Hematol 29, 209–248.CrossRefGoogle Scholar
  9. 9.
    Jiang, W. G., Martin, T. A., Parr, C., Davies, G., Matsumoto, K., and Nakamura, T. (2005) Hepatocyte growth factor, its receptor, and their potential value in cancer therapies, Crit Rev Oncol Hematol 53, 35–69.CrossRefGoogle Scholar
  10. 10.
    Pan, W., Yu, Y., Yemane, R., Cain, C., Yu, C., and Kastin, A. J. (2006) Permeation of hepatocyte growth factor across the blood-brain barrier, Exp Neurol 201, 99–104.CrossRefGoogle Scholar
  11. 11.
    Gong, R. (2008) Multi-target anti-inflammatory action of hepatocyte growth factor, Curr Opin Investig Drugs 9, 1163–1170.Google Scholar
  12. 12.
    Ido, A., Moriuchi, A., Kim, I., Numata, M., Nagata-Tsubouchi, Y., Hasuike, S., Uto, H., and Tsubouchi, H. (2004) Pharmacokinetic study of recombinant human hepatocyte growth factor administered in a bolus intravenously or via portal vein, Hepatol Res 30, 175–181.CrossRefGoogle Scholar
  13. 13.
    Ueno, S., Aikou, T., Tanabe, G., Kobayashi, Y., Hamanoue, M., Mitsue, S., Kawaida, K., and Nakamura, T. (1996) Exogenous hepatocyte growth factor markedly stimulates liver regeneration following portal branch ligation in dogs, Cancer Chemother Pharmacol 38, 233–237.CrossRefGoogle Scholar
  14. 14.
    Kobayashi, Y., Hamanoue, M., Ueno, S., Aikou, T., Tanabe, G., Mitsue, S., Matsumoto, K., and Nakamura, T. (1996) Induction of hepatocyte growth by intraportal infusion of HGF into beagle dogs, Biochem Biophys Res Commun 220, 7–12.CrossRefGoogle Scholar
  15. 15.
    Oe, S., Fukunaka, Y., Hirose, T., Yamaoka, Y., and Tabata, Y. (2003) A trial on regeneration therapy of rat liver cirrhosis by controlled release of hepatocyte growth factor, J Control Release 88, 193–200.CrossRefGoogle Scholar
  16. 16.
    Engel, E., Michiardi, A., Navarro, M., Lacroix, D., and Planell, J. A. (2008) Nanotechnology in regenerative medicine: the materials side, Trends Biotechnol 26, 39–47.CrossRefGoogle Scholar
  17. 17.
    Li, F., Sun, J.-Y., Wang, J.-Y., Du, S.-L., Lu, W.-Y., Liu, M., Xie, C., Shi, J.-Y. (2008) Effect of hepatocyte growth factor encapsulated in targeted liposomes on liver cirrhosis, J Control Release 131, 77–82.CrossRefGoogle Scholar
  18. 18.
    Dang, J. M., and Leong, K. W. (2006) Natural polymers for gene delivery and tissue engineering, Adv Drug Deliv Rev 58, 487–499.CrossRefGoogle Scholar
  19. 19.
    Malafaya, P. B., Silva, G. A., and Reis, R. L. (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications, Adv Drug Deliv Rev 59, 207–233.CrossRefGoogle Scholar
  20. 20.
    Ponchel, G., and Irache, J. (1998) Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract, Adv Drug Deliv Rev 34, 191–219.CrossRefGoogle Scholar
  21. 21.
    Soares, A. F., Carvalho Rde, A., and Veiga, F. (2007) Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems, Nanomed 2, 183–202.CrossRefGoogle Scholar
  22. 22.
    Sarmento, B., Ferreira, D., Veiga, F., and Ribeiro, A. (2006) Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies, Carbohyd Polym 66, 1–7.CrossRefGoogle Scholar
  23. 23.
    Sarmento, B., Ferreira, D. C., Jorgensen, L., and van de Weert, M. (2007) Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles, Eur J Pharm Biopharm 65, 10–17.CrossRefGoogle Scholar
  24. 24.
    Sarmento, B., Martins, S., Ribeiro, A., Veiga, F., Neufeld, R., and Ferreira, D. (2006) Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers, Int J Pept Res Ther 12, 131–138.CrossRefGoogle Scholar
  25. 25.
    Sarmento, B., Ribeiro, A., Veiga, F., and Ferreira, D. (2006) Development and characterization of new insulin containing polysaccharide nanoparticles, Colloids Surf B Biointerfaces 53, 193–202.CrossRefGoogle Scholar
  26. 26.
    Sarmento, B., Ribeiro, A. J., Veiga, F., Ferreira, D. C., and Neufeld, R. J. (2007) Insulin-loaded nanoparticles are prepared by alginate lonotropic pre-gelation followed by chitosan polyelectrolyte complexation, J Nanosci Nanotech 7, 2833–2841.CrossRefGoogle Scholar
  27. 27.
    Martins, S., Sarmento, B., Souto, E. B., and Ferreira, D. C. (2007) Insulin-loaded alginate microspheres for oral delivery - Effect of polysaccharide reinforcement on physicochemical properties and release profile, Carbohyd Polym 69, 725–731.CrossRefGoogle Scholar
  28. 28.
    Sarmento, B., Ribeiro, A., Veiga, F., Ferreira, D., and Neufeld, R. (2007) Oral bioavailability of insulin contained in polysaccharide nanoparticles, Biomacromolecules 8, 3054–3060.CrossRefGoogle Scholar
  29. 29.
    Sarmento, B., Ribeiro, A., Veiga, F., Sampaio, P., Neufeld, R., and Ferreira, D. (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery, Pharm Res 24, 2198–2206.CrossRefGoogle Scholar
  30. 30.
    Hall, J. B., Dobrovolskaia, M. A., Patri, A. K., and McNeil, S. E. (2007) Characterization of nanoparticles for therapeutics, Nanomed 2, 789–803.CrossRefGoogle Scholar
  31. 31.
    Peltonen, L., and Hirvonen, J. (2008) Physicochemical characterization of nano- and microparticles, Curr Nanosci 4, 101–107.CrossRefGoogle Scholar
  32. 32.
    Human HGF ELISA Kit Manual. Invitrogen Corporation (Camarillo, CA, USA). Available from URL: http://tools.invitrogen.com/content/sfs/manuals/KAC2211%20(pr072)%20Hu%20HGF%20(BSE)Rev%201.0.pdf [Accessed 2009 Aug 15].
  33. 33.
    Van de Weert, M., Hering, J. A., and Haris, P. I. (2005) Fourier Transform Infrared Spectroscopy, In Methods for Structural Analysis of Protein Pharmaceuticals (Jiskoot, W., and Crommelin, D., Eds.), pp 131–166, AAPS Press, Arlington, VA.Google Scholar
  34. 34.
    Jorgensen, L., Vermehren, C., Bjerregaard, S., and Froekjaer, S. (2003) Secondary structure alterations in insulin and growth hormone water-in-oil emulsions, Int J Pharm 254, 7–10.CrossRefGoogle Scholar
  35. 35.
    Dong, A., Huang, P., and Caughey, W. S. (1990) Protein secondary structures in water from second-derivative amide I infrared spectra, Biochemistry (Mosc) 29, 3303–3308.CrossRefGoogle Scholar
  36. 36.
    Fukuta, K., Adachi, E., Matsumoto, K., and Nakamura, T. (2009) Different reactivities of enzyme-linked immunosorbent assays for hepatocyte growth factor, Clin Chim Acta 402, 42–46.CrossRefGoogle Scholar
  37. 37.
    Gherardi, E., Gray, J., Stoker, M., Perryman, M., and Furlong, R. (1989) Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement, Proc Natl Acad Sci U S A 86, 5844–5848.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Catarina Ribeiro
    • 1
  • Ana Patrícia Neto
    • 1
  • José das Neves
    • 1
  • Maria Fernanda Bahia
    • 1
  • Bruno Sarmento
    • 1
    Email author
  1. 1.Faculty of Pharmacy, Department of Pharmaceutical TechnologyUniversity of PortoPortoPortugal

Personalised recommendations