Skip to main content

Functionalization of Surfaces with Synthetic Oligonucleotides

  • Protocol
  • First Online:
Nanotechnology in Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 811))

Abstract

There is a large interest in the use of nucleic acids covalently bound to surfaces for a variety of biomedical uses: biosensors, microarrays, drug delivery, lab-on-chip devices, and gene therapy, etc. Most of these applications require the covalent attachment of oligonucleotides via specific reactive groups on both modified oligonucleotide and/or surface. The purpose of this chapter is to provide experimental protocols for the synthesis of oligonucleotides and for the immobilization of these synthetic oligonucleotides onto surfaces such as gold and silicon oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engel, E., Michiardi, A, Navarro, M., Lacroix, D., and Planell J.A. (2007) Nanotechnology in regenerative medicine: the materials side. Trends Biotech 26, 39–47.

    Article  Google Scholar 

  2. Cheng M.M-C., Cuda, G. Bunimovich, Y.L., Gaspari, M., Heath, J.R., Hill H.D., Mirkin, C.A., Nijdam, A.J., Terracciano, R., Thunday, T., and Ferrari M. (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Op Chem Biol 10, 11–19.

    Article  CAS  Google Scholar 

  3. Sassolas, A., Leca-Bouvier, D., and Blum, L. J. (2008) DNA biosensors and microarrays. Chem Rev 108, 109–139.

    Article  CAS  Google Scholar 

  4. Liu, J., Cao, Z., and Lu, Y. (2009) Functional nucleic acids sensors. Chem Rev 109, 1948–1998.

    Article  CAS  Google Scholar 

  5. Dittrich P.S. and Manz, A. (2006) Lab-on-a-chip microfluidics in drug discovery. Nat Rev Drug Discov 5, 210–218.

    Article  CAS  Google Scholar 

  6. Ito, Y. (2000) Surface micropatterning to regulate cell functions. Biomaterials 20, 2333–2342.

    Article  Google Scholar 

  7. Stevens, M.M., and George, J.H. (2005) Exploring and engineering the cell surface interface. Science 310, 1135–1138.

    Article  CAS  Google Scholar 

  8. Wilkins, C.D.W., Riehle, M., Wood, M., Gallagher, J., and Curtis, A.S.G. (2002) The use of nanomaterials patterned on a nano- and micro-metric scale in cellular engineering. Mater Sci Eng C 19, 263–269.

    Article  Google Scholar 

  9. Teixeira, A.I., McKie, G.A., Foley, J.D., Bertics, P.J., Nealey, P.F., and Murphy, C.J. (2006) The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27, 3945–3954.

    Article  CAS  Google Scholar 

  10. Chertok, B., Moffat, B.A., David, AE, Yu, F., Bergemann, C, Ross, B.D. and Yang, V.C. (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumours. Biomaterials 29487–496.

    Article  CAS  Google Scholar 

  11. Murthy, N., Campbell, J., Fausto, N., Hoffman, A.S. and Stayton, P.S. (2003) Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J Control Release 89, 365–374.

    Article  CAS  Google Scholar 

  12. Chertok, B., Moffat, B.A., David, A.E., Yu, F., Bergemann, C., Ross, B.D., and Yang, V.C. (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496.

    Article  CAS  Google Scholar 

  13. Pirrung, M.C. (2002) How to make a DNA chip. Angew Chem Int Ed 41, 1276–1289.

    Article  CAS  Google Scholar 

  14. Huang, E., Satjapipat, M., Han, S., and Zhou, F. (2001) Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir 17, 1215–1224.

    Article  CAS  Google Scholar 

  15. Garibotti, A.V., Sisquella, X., Martínez, E., and Eritja R (2009) Assembly of two-dimensional DNA crystals carrying N4-[2-(tert-butyldisulfanyl)ethyl]-cytosine residues. Helv Chim Acta 92, 1466–1472.

    Article  CAS  Google Scholar 

  16. Manning, M., and Redmond, G. (2005) Formation and characterization of DNA microarrays at silicon nitride substrates. Langmuir 21, 395–402.

    Article  CAS  Google Scholar 

  17. Manning, M., Galvin, P., and Redmond, G. (2002) A robust procedure for DNA microarray fabrication and screening in the molecular biology laboratory. Am Biotech Lab 20, 16–17.

    CAS  Google Scholar 

  18. Manning, B., Leigh, S.J., Ramos, R., Preece, J., and Eritja, R. (2009) Fabrication of patterned surfaces by photolithographic exposure of DNA-hairpins carrying a novel photolabile group. J Exp Nanoscience 5

    Google Scholar 

  19. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609.

    Article  CAS  Google Scholar 

  20. Nelson, P.S., Kent, M., and Muthini, S. (1992) Oligonucleotide labelling methods. 3. Direct labeling of oligonucleotides employing a novel, non-nucleosidic, 2-aminobutyl-1, 3-propanediol backbone. Nucleic Acids Res 20, 6253–6259.

    Article  CAS  Google Scholar 

  21. Sinha, N.D., and Cook, R.M. (1988) The preparation and application of functionalised synthetic oligonucleotides. III Use of H-phosphonate derivatives of protected aminohexanol and mercaptopropanol or mercaptohexanol. Nucleic Acids Res 16, 2659–2669.

    CAS  Google Scholar 

  22. Güimil García, R., and Eritja, R. (1997) Preparation, purification and analysis of synthetic oligonucleotides suitable for microinjection experiments. Microinjection and transgenesis. Strategies and protocols (A. Cid-Arregui, A. García-Carrancá, Eds) Springer Laboratory Manuals, Springer, Berlin pp 95–112.

    Google Scholar 

  23. Hegner, M., Wagner, P., and Semenza, G. (1993) Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf Sci 291, 39–46.

    Article  CAS  Google Scholar 

  24. Zaramella, S., Yeheskiely, E., and Strömberg, R. (2004) A method for solid-phase synthesis of oligonucleotide 5′-peptide-conjugates using acid-labile alpha-amino protection. J Am Chem Soc 126, 14029–14035.

    Article  CAS  Google Scholar 

  25. Ocampo, S. M., Albericio, F., Fernández, I., Vilaseca, M., and Eritja, R. (2005) A straightforward synthesis of 5′-peptide oligonucleotide conjugates using Nα-Fmoc-protected amino acids. Org Lett 7, 4349–4352.

    Article  CAS  Google Scholar 

  26. Kojima, N., Takebayashi, T., Mikami, A., Ohtsuka, E., and Komatsu, Y. (2009) Efficient synthesis of oligonucleotide conjugates on solid-support using an (aminoethoxycarbonyl)aminohexyl group for 5′-terminal modification. Bioorg Med Chem Lett 19, 2144–2147.

    Article  CAS  Google Scholar 

  27. Petrie, C. R., Reed, M. W., Adams, A. D., and Meyer, R. B. Jr (1992) An improved CPG support for the synthesis of 3′-amine tailed oligonucleotides. Bioconjug Chem 3, 85–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Spanish Ministry of Education (NAN2004-09415-C05-03, BFU2007-63287/BMC), Generalitat de Catalunya (2005/SGR/00693), Instituto de Salud Carlos III (CIBER-BNN), and European Communities (NANO-3D NMP4-CT2005-014006, DYNAMO contract 028669 (NEST), FUNMOL NMP4-SL-2009-213382). B.M. thanks the SFI-CRANN/UCD for the predoctoral fellowship. We are thankful to Elena Martínez and Xavier Sisquella of Scientific Park of Barcelona (PCB) for providing us template stripped gold.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Eritja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Manning, B., Eritja, R. (2012). Functionalization of Surfaces with Synthetic Oligonucleotides. In: Navarro, M., Planell, J. (eds) Nanotechnology in Regenerative Medicine. Methods in Molecular Biology, vol 811. Humana Press. https://doi.org/10.1007/978-1-61779-388-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-388-2_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-387-5

  • Online ISBN: 978-1-61779-388-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics