Functionalization of Surfaces with Synthetic Oligonucleotides

  • Brendan Manning
  • Ramon EritjaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 811)


There is a large interest in the use of nucleic acids covalently bound to surfaces for a variety of biomedical uses: biosensors, microarrays, drug delivery, lab-on-chip devices, and gene therapy, etc. Most of these applications require the covalent attachment of oligonucleotides via specific reactive groups on both modified oligonucleotide and/or surface. The purpose of this chapter is to provide experimental protocols for the synthesis of oligonucleotides and for the immobilization of these synthetic oligonucleotides onto surfaces such as gold and silicon oxide.

Key words

DNA Nucleic acids Biosensors Surface analysis Oligonucleotides Microarrays 



This work is supported by Spanish Ministry of Education (NAN2004-09415-C05-03, BFU2007-63287/BMC), Generalitat de Catalunya (2005/SGR/00693), Instituto de Salud Carlos III (CIBER-BNN), and European Communities (NANO-3D NMP4-CT2005-014006, DYNAMO contract 028669 (NEST), FUNMOL NMP4-SL-2009-213382). B.M. thanks the SFI-CRANN/UCD for the predoctoral fellowship. We are thankful to Elena Martínez and Xavier Sisquella of Scientific Park of Barcelona (PCB) for providing us template stripped gold.


  1. 1.
    Engel, E., Michiardi, A, Navarro, M., Lacroix, D., and Planell J.A. (2007) Nanotechnology in regenerative medicine: the materials side. Trends Biotech 26, 39–47.CrossRefGoogle Scholar
  2. 2.
    Cheng M.M-C., Cuda, G. Bunimovich, Y.L., Gaspari, M., Heath, J.R., Hill H.D., Mirkin, C.A., Nijdam, A.J., Terracciano, R., Thunday, T., and Ferrari M. (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Op Chem Biol 10, 11–19.CrossRefGoogle Scholar
  3. 3.
    Sassolas, A., Leca-Bouvier, D., and Blum, L. J. (2008) DNA biosensors and microarrays. Chem Rev 108, 109–139.CrossRefGoogle Scholar
  4. 4.
    Liu, J., Cao, Z., and Lu, Y. (2009) Functional nucleic acids sensors. Chem Rev 109, 1948–1998.CrossRefGoogle Scholar
  5. 5.
    Dittrich P.S. and Manz, A. (2006) Lab-on-a-chip microfluidics in drug discovery. Nat Rev Drug Discov 5, 210–218.CrossRefGoogle Scholar
  6. 6.
    Ito, Y. (2000) Surface micropatterning to regulate cell functions. Biomaterials 20, 2333–2342.CrossRefGoogle Scholar
  7. 7.
    Stevens, M.M., and George, J.H. (2005) Exploring and engineering the cell surface interface. Science 310, 1135–1138.CrossRefGoogle Scholar
  8. 8.
    Wilkins, C.D.W., Riehle, M., Wood, M., Gallagher, J., and Curtis, A.S.G. (2002) The use of nanomaterials patterned on a nano- and micro-metric scale in cellular engineering. Mater Sci Eng C 19, 263–269.CrossRefGoogle Scholar
  9. 9.
    Teixeira, A.I., McKie, G.A., Foley, J.D., Bertics, P.J., Nealey, P.F., and Murphy, C.J. (2006) The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27, 3945–3954.CrossRefGoogle Scholar
  10. 10.
    Chertok, B., Moffat, B.A., David, AE, Yu, F., Bergemann, C, Ross, B.D. and Yang, V.C. (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumours. Biomaterials 29487–496.CrossRefGoogle Scholar
  11. 11.
    Murthy, N., Campbell, J., Fausto, N., Hoffman, A.S. and Stayton, P.S. (2003) Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J Control Release 89, 365–374.CrossRefGoogle Scholar
  12. 12.
    Chertok, B., Moffat, B.A., David, A.E., Yu, F., Bergemann, C., Ross, B.D., and Yang, V.C. (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496.CrossRefGoogle Scholar
  13. 13.
    Pirrung, M.C. (2002) How to make a DNA chip. Angew Chem Int Ed 41, 1276–1289.CrossRefGoogle Scholar
  14. 14.
    Huang, E., Satjapipat, M., Han, S., and Zhou, F. (2001) Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir 17, 1215–1224.CrossRefGoogle Scholar
  15. 15.
    Garibotti, A.V., Sisquella, X., Martínez, E., and Eritja R (2009) Assembly of two-dimensional DNA crystals carrying N4-[2-(tert-butyldisulfanyl)ethyl]-cytosine residues. Helv Chim Acta 92, 1466–1472.CrossRefGoogle Scholar
  16. 16.
    Manning, M., and Redmond, G. (2005) Formation and characterization of DNA microarrays at silicon nitride substrates. Langmuir 21, 395–402.CrossRefGoogle Scholar
  17. 17.
    Manning, M., Galvin, P., and Redmond, G. (2002) A robust procedure for DNA microarray fabrication and screening in the molecular biology laboratory. Am Biotech Lab 20, 16–17.Google Scholar
  18. 18.
    Manning, B., Leigh, S.J., Ramos, R., Preece, J., and Eritja, R. (2009) Fabrication of patterned surfaces by photolithographic exposure of DNA-hairpins carrying a novel photolabile group. J Exp Nanoscience 5 Google Scholar
  19. 19.
    Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609.CrossRefGoogle Scholar
  20. 20.
    Nelson, P.S., Kent, M., and Muthini, S. (1992) Oligonucleotide labelling methods. 3. Direct labeling of oligonucleotides employing a novel, non-nucleosidic, 2-aminobutyl-1, 3-propanediol backbone. Nucleic Acids Res 20, 6253–6259.CrossRefGoogle Scholar
  21. 21.
    Sinha, N.D., and Cook, R.M. (1988) The preparation and application of functionalised synthetic oligonucleotides. III Use of H-phosphonate derivatives of protected aminohexanol and mercaptopropanol or mercaptohexanol. Nucleic Acids Res 16, 2659–2669.Google Scholar
  22. 22.
    Güimil García, R., and Eritja, R. (1997) Preparation, purification and analysis of synthetic oligonucleotides suitable for microinjection experiments. Microinjection and transgenesis. Strategies and protocols (A. Cid-Arregui, A. García-Carrancá, Eds) Springer Laboratory Manuals, Springer, Berlin pp 95–112.Google Scholar
  23. 23.
    Hegner, M., Wagner, P., and Semenza, G. (1993) Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf Sci 291, 39–46.CrossRefGoogle Scholar
  24. 24.
    Zaramella, S., Yeheskiely, E., and Strömberg, R. (2004) A method for solid-phase synthesis of oligonucleotide 5′-peptide-conjugates using acid-labile alpha-amino protection. J Am Chem Soc 126, 14029–14035.CrossRefGoogle Scholar
  25. 25.
    Ocampo, S. M., Albericio, F., Fernández, I., Vilaseca, M., and Eritja, R. (2005) A straightforward synthesis of 5′-peptide oligonucleotide conjugates using Nα-Fmoc-protected amino acids. Org Lett 7, 4349–4352.CrossRefGoogle Scholar
  26. 26.
    Kojima, N., Takebayashi, T., Mikami, A., Ohtsuka, E., and Komatsu, Y. (2009) Efficient synthesis of oligonucleotide conjugates on solid-support using an (aminoethoxycarbonyl)aminohexyl group for 5′-terminal modification. Bioorg Med Chem Lett 19, 2144–2147.CrossRefGoogle Scholar
  27. 27.
    Petrie, C. R., Reed, M. W., Adams, A. D., and Meyer, R. B. Jr (1992) An improved CPG support for the synthesis of 3′-amine tailed oligonucleotides. Bioconjug Chem 3, 85–87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Research in BiomedicineIQAC-CSIC, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain

Personalised recommendations