Stimuli Responsive Polymers for Nanoengineering of Biointerfaces

  • Szczepan ZapotocznyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 811)


There is an increasing demand on the development of “smart” switchable interfaces since controlling surface topography and chemical functionality on a nanometer scale is crucial for numerous biomedical applications. Those surfaces, which are based on stimuli responsive polymers (SRPs), are able to modify their interactions with cells, biomolecules responding to different physical (e.g., temperature) or chemical (e.g., pH) stimuli. Such behavior may partially mimic complex dynamic properties of natural systems that are regulated by many biological stimuli. This paper reviews major studies and applications of SRPs as biointerfaces in a form of thin polymeric films (gels) and surface tethered polymers (brushes).

Key words

Stimuli responsive polymers Polymer brush Polymer film Cell adhesion Poly(N-isopropylacrylamide) Elastin-like polypeptides 



The author acknowledges the financial support from the project operated within the Foundation for Polish Science Team Programme cofinanced by the EU European Regional Development Fund, PolyMed, TEAM/2008-2/6. Dr. Edmondo M. Benetti (ETH Zürich) is kindly acknowledged for his comments to the protocol part.


  1. 1.
    Ikada, Y. (1994) Surface modification of polymers for medical applications. Biomaterials 15, 725–736.Google Scholar
  2. 2.
    Chu, P. K., Chen, J. Y., Wang, L. P., Huang, N. (2002) Plasma-surface modification of biomaterials Mater. Sci. Eng. R-Reports 36, 143–206.Google Scholar
  3. 3.
    Park, G. E., Pattison, M. A., Park, K., Webster, T. J. (2005) Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds, Biomaterials 26, 3075–3082.Google Scholar
  4. 4.
    Chilkoti, A. Hubbell, J. A. (2005) Biointerface science. MRS Bulletin 30, 175–176.Google Scholar
  5. 5.
    Lahann, J., Langer, R. (2005) Smart materials with dynamically controllable surfaces. MRS Bulletin 30, 185–188.Google Scholar
  6. 6.
    Mrksich, M. (2005) Dynamic substrates for cell biology. MRS Bulletin 30, 180–184.Google Scholar
  7. 7.
    Heskins, M. Guillet, J. E. (1968) Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci., Chem. A2 , 14411455.Google Scholar
  8. 8.
    Winnik, F. M. (1990) Fluorescence studies of aqueous solutions of poly(N- isopropylacrylamide) below and above their LCST. Macromolecules 23, 233–242.Google Scholar
  9. 9.
    Siegel, R.A., Firestone, B. A. (1988) pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 21, 3254.Google Scholar
  10. 10.
    Kontturi, K., Mafé, S., Manzanares, J. A., Svarfvar, B. L., Viinikka, P. Modeling of the Salt and pH Effects on the Permeability of Grafted Porous Membranes. (1996) Macromolecules 29, 5740.Google Scholar
  11. 11.
    Kwon, I. C., Bae, Z. H., Kim, S. W. (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354, 291–293.Google Scholar
  12. 12.
    Miyata, T., Asami, N., Uragami, T. (1999) A reversibly antigen-responsive hydrogel. Nature 399, 766.Google Scholar
  13. 13.
    Dai, S., Ravi, P., Tam, K.C. (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5, 2513–2533.Google Scholar
  14. 14.
    Kumar, A., Srivastava, A., Galaev, I.Y., Mattiasson, B. (2007) Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci. (Oxford) 32, 1205–1237.Google Scholar
  15. 15.
    Alexander, C., Shakesheff, K.M. (2006) Responsive polymers at the biology/materials science interface.Adv. Mat. 18, 3321–3328.Google Scholar
  16. 16.
    Schild, H.G. (1992) Poly (N-isopropylacryl­amide): experiment, theory and application. Prog. Polym. Sci. 17, 163–249.Google Scholar
  17. 17.
    Yeo, W. S., Yousaf, M. N., Mrksich, M. (2003) Dynamic Interfaces between Cells and Surfaces: Electroactive Substrates that Sequentially Release and Attach Cells. J. Am. Chem. Soc. 125, 14994.Google Scholar
  18. 18.
    Mendes, P. M., Christman, K. L., Parthasarathy, P., Schopf, E., Ouyang, J., Yang, Y., Preece, J. A., Maynard, H. D., Chen, Y., Stoddart, J. F. (2007) Electrochemically controllable conjugation of proteins on surfaces. Bioconjugate Chem. 18, 1919.Google Scholar
  19. 19.
    Auernheimer, J., Dahmen, C., Hersel, U., Bausch, A., Kessler, H. (2005) Photoswitched Cell Adhesion on Surfaces with RGD Peptides. J. Am. Chem. Soc. 127, 16107.Google Scholar
  20. 20.
    Kost, J., Langer, R. (2001) Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 46, 125–148.Google Scholar
  21. 21.
    Chilkoti, A., Dreher, M. R., Meyer, D. E., Raucher, D. (2002) Targeted drug delivery by thermallyresponsive polymers. Adv. Drug Deliv. Rev. 54, 613–630.Google Scholar
  22. 22.
    Langer, R., Tirrell, D. A. (2004) Designing materials for biology and medicine. Nature 428, 487–492.Google Scholar
  23. 23.
    Cole, M.A., Voelcker, N.H., Thissen, H., Griesser, H.J. (2009) Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials 30, 18271850.Google Scholar
  24. 24.
    Alexander, C., Shakesheff, K. M. (2006) Responsive Polymers at the Bilology/Materials Science Interface Adv. Mat. 18, 3321–3328.Google Scholar
  25. 25.
    Norrman, K., Ghanbari-Siahkali, A., Larsen, N. B. (2005) Studies of spin-coated polymer films. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 101, 174.Google Scholar
  26. 26.
    Decher, G. (1997) Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 277, 1232.Google Scholar
  27. 27.
    Mittal, K. L., Lee, K.-W. (1997) Polymer Surfaces and Interfaces: Characterization, Modification and Applications, VSP, Utrecht.Google Scholar
  28. 28.
    Bertrand, P., Jonas, A., Laschewsky, A., Legras, R. (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: Suitable materials, structure and properties. Macromol. Rapid Commun. 21, 319.Google Scholar
  29. 29.
    Boudou, T., Crouzier, T., Ren, K., Blin, G., Picart, C. (2009) Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications. Adv. Mat. 21, 1–27.Google Scholar
  30. 30.
    Sukhishvili, S. A. (2005) Responsive polymer films and capsules via layer-by-layer assembly. Curr. Opinion Coll. Interface Sci. 10, 37–44.Google Scholar
  31. 31.
    Tang, Z., Wang, Y., Podsiadlo, P., Kotov, N.A. (2006) Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mat. 18, 3203–3224.Google Scholar
  32. 32.
    Picart, C. (2008) Polyelectrolyte multilayer film: From physico-chemical properties to the control of cellular processes. Curr. Medicinal Chem. 15, 685–697.Google Scholar
  33. 33.
    De Geest, B. G., De Koker, S., Sukhorukov, G. B., Kreft, O., Parak, W. J., Skirtach, A. G., Demeester, J., De Smedt, S. C., Henninka, W. E. (2009) Polyelectrolyte microcapsules for biomedical applications. Soft Matter 5, 282.Google Scholar
  34. 34.
    Bulwan, M, Zapotoczny, S., Nowakowska, M. (2009) Robust one-component chitosan-based ultrathin films fabricated using layer-by-layer technique. Soft Matter 5,4726 – 4732.Google Scholar
  35. 35.
    von Recum, H.A., Kim, S.W., Kikuchi, A., Okuhara, M., Sakurai, Y., Okano, T. (1998) Novel thermally reversible hydrogel as detachable cell culture substrate. J. Biomed. Mater. Res. 40, 631–639.Google Scholar
  36. 36.
    Jeonga, B., Kim, S.W., Bae, Y. H. (2002) Thermosensitive sol–gel reversible hydrogels. Adv. Drug Deliv. Rev. 54, 37–51.Google Scholar
  37. 37.
    Pan, Y.V., Wesley, R.A., Luginbuhl, R., Denton, D.D., Ratner, B.D. (2001) Plasma polymerized N-isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2, 32–36.Google Scholar
  38. 38.
    da Silva, R. M. P., Mano, J. F., Reis, R. L. (2007) Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnology 25, 577–583.Google Scholar
  39. 39.
    Skotheim, T. A., Reynolds, J. R. (2007) Handbook of Conductive Polymers, CRC Press, Boca Raton.Google Scholar
  40. 40.
    Ahn, Y. H., Mironov, V. A., Gutowska, A. (2001) Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices. US patent, US6103528.Google Scholar
  41. 41.
    Yamada, N., Okano, T., Sakai, H., Karikusa, F., Sawasaki Y., Sakurai, Y. (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol. Chem., Rapid Commun., 11, 571.Google Scholar
  42. 42.
    Canavan, H. E., Cheng, X. H., Graham, D. J., Ratner B. D., Castner, D. G. (2005) J. Biomed. Mater. Res. Part A 75A, 1–13.Google Scholar
  43. 43.
    Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., Okano, T. (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-­responsive culture surfaces. J. Biomed. Mater. Res. Part A 45, 355–362.Google Scholar
  44. 44.
    Ide, T., Nishida, K., Yamato, M., Sumide, T., Utsumi, M., Nozaki, T., Kikuchi, A., Okano, T., Tano, Y. (2006) Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 27, 607–614.Google Scholar
  45. 45.
    Yamato, M., Okano, T. (2004) Cell sheet engineering. Mater Today 7, 42–47.Google Scholar
  46. 46.
    Yang, J., Yamato, M., Konno, C., Nishimoto, A., Sekine, H., Fukai, F., Okano, T. (2005) Cell sheetengineering: Recreating tissues without biodegradable scaffolds. Biomaterials 26, 6415–6422.Google Scholar
  47. 47.
    Akiyama, Y., Kikuchi, A., Yamato, M., Okano, T. (2004) Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20, 5506–5511.Google Scholar
  48. 48.
    Yang, J., Yamato, M., Shimizu, T., Sekine, H., Ohashi, K., Kanzaki, M., Ohki, T., Nishida, K., Okano, T. (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28, 5033–5043.Google Scholar
  49. 49.
    Kikuchi, A., Okano, T. (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Control Release 101,69–84.Google Scholar
  50. 50.
    Falconnet, D., Csucs, G., Michelle Grandin, H., Textor, M. (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27, 3044–3063.Google Scholar
  51. 51.
    Engel, E., Michiardi, A., Navarro, M., Lacroix, D., Planell, J.A. (2008) Nanotechnology in regenerative medicine: the materials side. Trends Biotechnology 26, 39–47.Google Scholar
  52. 52.
    Zinger, O., Zhao, G., Schwartz, Z., Simpson, J., Wieland, M., Landolt, D., Boyan, B., (2005) Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 26, 1837–1847.Google Scholar
  53. 53.
    Teixeira, A.I. McKie, G. A., Foley, J. D., Bertics, P. J., Nealey, P. F., Murphy, C. J. (2006) The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27, 3945–3954.Google Scholar
  54. 54.
    Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano, T. (2005) The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 26, 1885–1893.Google Scholar
  55. 55.
    Kujawa, P., Winnik, F. M. (2001) Volumetric studies of aqueous polymer solutions using pressure perturbation calorimetry: a new look at the temperature-induced phase transition of poly(N-isopropylacrylamide) in water and D2O. Macromolecules 43, 4130–4135.Google Scholar
  56. 56.
    Tatsuma, T., Saito, K., Oyama, N. (1994) Enzyme-exchangeable enzyme electrodes employing a thermoshrinking redox gel. J. Chem. Soc., Chem. Commun. 1853.Google Scholar
  57. 57.
    Yang, H., Choi, C. A., Chung, K. H., Jun, C.-H., Kim, Y. T. (2004) An independent, temperature controllablemicroelectrode array. Anal. Chem. 76, 1537–1543.Google Scholar
  58. 58.
    Cheng, X., Wang, Y., Hanein, Y., Bohringer, K., Ratner, B. D. (2004) Novel cell patterning using microheater-controlled thermoresponsive plasma films. J. Biomed. Mater. Res. Part A 70, 159–168.Google Scholar
  59. 59.
    Ruoslahti, E., Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrins. Science 238, 491.Google Scholar
  60. 60.
    Stile, R. A., Healy, K. E. (2001) Thermo-responsive peptide-modified hydrogels for ­tissue regeneration.Biomacromolecules 2, 185–194.Google Scholar
  61. 61.
    Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K., Okano, T. (2004) Immobilization of cell adhesivepeptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 10, 1125–1135.Google Scholar
  62. 62.
    Urry, D. W., Luan, C. H., Parker, T. M., Gowda, D. C., Prasad, K. U., Reid, M. C., Safavy, A. (1991) Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J. Am. Chem. Soc. 113, 4346–4348.Google Scholar
  63. 63.
    Rodríguez-Cabello, J. C., Prieto, S., Reguera, J., Arias, F. J., Ribeiro, A. (2007) Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. J. Bio­mater. Sci. Polym. Ed. 18, 269–286.Google Scholar
  64. 64.
    Urry, D. W. (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028.Google Scholar
  65. 65.
    Hyun, J., Lee, W.-K., Nath, N., Chilkoti, A., Zauscher, S. (2004) Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches”. J. Am. Chem. Soc. 126, 7330–7335.Google Scholar
  66. 66.
    Meyer, D. E., Chilkoti, A. (1999) Purification of recombinant proteins by fusion with thermally responsivePolypeptides. Nat. Biotechnol. 17, 1112–1115.Google Scholar
  67. 67.
    Nath, N., Chilkoti, A. (2003) Fabrication of a reversible protein array directly from cell lysate using a stimuli-responsive polypeptide. Anal. Chem. 75, 709–715.Google Scholar
  68. 68.
    Kim, J. Y., Mulchandani, A. Chen, W. (2005) Temperature-triggered purification of antibodies. Biotechnol. Bioeng. 90, 373–379.Google Scholar
  69. 69.
    Serpe, M. J., Jones, C. D., Lyon, L. A. (2003) Layer-by-layer deposition of thermoresponsive microgel thin films. Langmuir 19, 8759.Google Scholar
  70. 70.
    Nolan, Ch. M., Serpe, M. J., Lyon, L. A. (2004) Thermally modulated insulin release from microgel thin films. Biomacromolecules 5, 1940.Google Scholar
  71. 71.
    Serpe, M. J., Yarmey, K. A., Nolan, Ch. M., Lyon, L. A.(2005) Doxorubicin uptake and release from microgel thin films. Biomacromolecules 6, 408.Google Scholar
  72. 72.
    Gao, J., Haidar, G., Lu, X., Hu, Z. (2001) Self-association of hydroxypropylcellulose in water. Macromolecules 34, 2242–2247.Google Scholar
  73. 73.
    Li, L., Thangamathesvaran, P. M., Yue, C. Y., Tam, K. C., Hu, X., Lam, Y. C. (2001) Gel Network Structure of Methylcellulose in Water. Langmuir 17, 8062–8068.Google Scholar
  74. 74.
    Heitfeld, K.A., Guo, T., Yang, G., Schaefer, D.W. (2008) Temperature responsive hydroxypropyl cellulose for encapsulation. Mater. Sci. Eng. C 28, 374–379.Google Scholar
  75. 75.
    Burke, S.E., Barrett, Ch. J. (2004) pH-dependent loading and release behavior of small hydrophilic molecules in weak polyelectrolyte multilayer films. Macromolecules 37, 5375.Google Scholar
  76. 76.
    Hiller, J., Rubner, M. F. (2003) Reversible molecular memory and pH-switchable swelling transitions in polyelectrolyte multilayers. Macromolecules 36, 4078.Google Scholar
  77. 77.
    Thompson, M. T., Berg, M. C., Tobias, I. S., Rubner M. F., Van Vliet, K. J. (2005) Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials 26, 6836–6845.Google Scholar
  78. 78.
    Gerard, M., Chaubey, A., Malhotra, B. D. (2002) Application of polyaniline as enzyme based biosensor Biosens. Bioelectron. 17, 345.Google Scholar
  79. 79.
    George, P. M., La Van, D. A., Burdick, J. A., Chen, C. Y., Liang E., Langer, R. (2006) Electrically Controlled Drug Delivery from Biotin-Doped Conductive Polypyrrole. Adv. Mater. 18, 577.Google Scholar
  80. 80.
    Pyo, M., Maeder, G., Kennedy, R. T., Reynolds, J. R. (1994) Controlled release of biological molecules from conducting polymer modified electrodes. The potential dependent release of adenosine 5′-triphosphate from poly(pyrrole adenosine 5′-triphosphate) films. J. Electroanal. Chem. 368, 329.Google Scholar
  81. 81.
    Miller, L. L., Zhou, Q. X. (1987) Poly(N-methylpyrrolylium) poly(styrenesulfonate) - a conductive, electrically switchable cation exchanger that cathodically binds and anodically releases dopamine. Macromolecules 20, 1594–1597.Google Scholar
  82. 82.
    Wong, J. Y., Langer, R., Ingber, D. E. (1994) Electrically conducting polymers can noninvasively control theshape and growth of mammalian cells. Proc. Natl. Acad. Sci. USA. 91, 3201.Google Scholar
  83. 83.
    Schmidt, C.E., Shastri, V. R., Vacanti, J. P., Langer, R. (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA. 94, 8948–8953.Google Scholar
  84. 84.
    Higuchi, A., Hamamura, A., Shindo, Y., Kitamura, H., Yoon, B. O., Mori, T., Uyama T., Umezawa, A. (2004) Photon-Modulated Changes of Cell Attachments on Poly(spiropyran-co-methyl methacrylate) Membranes. Biomacromolecules 5, 1770.Google Scholar
  85. 85.
    Edahiro, J., Sumaru, K., Tada, Y., Ohi, K., Takagi, T., Kameda, M., Shinbo, T., Kanamori T., Yoshimi, Y. (2005) In Situ Control of Cell Adhesion Using Photoresponsive Culture Surface. Biomacromolecules 6, 970–974.Google Scholar
  86. 86.
    Hayashi, G., Hagihara, M., Dohno, C., Nakatani, K. (2007) Photoregulation of a Peptide  −  RNA Interaction on a Gold Surface. J. Am. Chem. Soc. 129, 8678–8679.Google Scholar
  87. 87.
    Ulijn R. V. (2006) Enzyme-responsive materials: a new class of smart biomaterials. J. Mater. Chem. 16, 2217–2225.Google Scholar
  88. 88.
    Todd, S. J., Farrar, D., Gough, J. E., Ulijn R. V. (2007) Enzyme-Triggered Cell Attachment to Hydrogel Surfaces. Soft Matter 3, 547–550.Google Scholar
  89. 89.
    Okajima, S., Sakai, Y., Yamaguchi, T. (2005) Development of a regenerable cell culture system that senses and releases dead cells. Langmuir 21, 4043–4049.Google Scholar
  90. 90.
    Milner, S. T. (1991) Polymer Brushes. Science 251, 905.Google Scholar
  91. 91.
    Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., Klok H.-A. (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 109, 5437–5527.Google Scholar
  92. 92.
    Navarro, M., Benetti, E. M., Zapotoczny, S., Planell J. A., Vancso, G. J. (2008) Buried, Covalently Attached RGD Peptide Motifs in Poly(methacrylic acid) Brush Layers: The Effect of Brush Structure on Cell Adhesion. Langmuir 24, 10996–11002.Google Scholar
  93. 93.
    Tanahashi, T., Kawaguchi, M., Honda, T., Takahashi, A. (1994) Adsorption of poly(N-isopropylacrylamide) on silica surfaces. Macromolecules 27, 606–607.Google Scholar
  94. 94.
    Cho, E. C., Kim, Y. D., Cho, K. (2004) Thermally responsive poly(N-isopropylacrylamide) monolayer on gold: synthesis, surface characterization, and protein interaction/adsorption studies. Polymer 45, 3195–3204.Google Scholar
  95. 95.
    Zhao, B., Brittain, W. J. (2000) Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677–710.Google Scholar
  96. 96.
    Edmondson, S., Osborne, V.L., Huck, W. T. S. (2004) Polymer brushes via surface-initiated polymerizationsChem. Soc. Rev. 33, 1422.Google Scholar
  97. 97.
    Jordan, R. (2006) Surface-Initiated Polymer­ization. Springer-Verlag, New York, 1st edn.Google Scholar
  98. 98.
    Jones, D. M., Smith, J. R., Huck, W. T. S., Alexander, C. (2002) Variable Adhesion of Micropatterned Thermoresponsive Polymer Brushes: AFM Investigations of Poly(N-isopropylacrylamide) Brushes Prepared by Surface-Initiated Polymerizations. Adv. Mater. 14, 1130–1134.Google Scholar
  99. 99.
    Benetti, E. M., Zapotoczny, S., Vancso, G. J. (2007) Tunable thermoresponsive polymeric platforms on gold by photoiniferter-based surface grafting. Adv. Mater. 19, 268–271.Google Scholar
  100. 100.
    Zapotoczny, S., Benetti, E. M., Vancso, G. J. (2007) Preparation and characterization of macromolecular “hedge” brushes grafted from Au nanowires. J. Mater. Chem. 17, 3293–3296.Google Scholar
  101. 101.
    Benetti, E. M., Chung, H. J., Vancso, G. J. (2009) pH Responsive Polymeric Brush Nanostructures: Preparation and Characterization by Scanning Probe Oxidation and Surface Initiated Polymerization. Macromol. Rapid Commun. 30, 411–417.Google Scholar
  102. 102.
    Advincula, R. C., Brittain, W. J., Caster, K.C., Rühe, J., (2004) Polymer Brushes: Synthesis, Characterization, Applications. Wiley-VCH Verlag GmbH &Co. KGaA: Weinheim, Germany.Google Scholar
  103. 103.
    Luzinov, I., Minko, S., Tsukruk, V.V. (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Progr. Polym. Sci. (Oxford) 29, 635–698.Google Scholar
  104. 104.
    Raviv, U., Giasson, S., Kampf, N., Gohy, J.-F., Jérôme, R., Klein, J. (2003) Lubrication by charged polymers. Nature 425, 163–165.Google Scholar
  105. 105.
    Chen, M., Briscoe, W. H., Armes, S. P., Klein, J. (2009) Lubrication at Physiological Pressures by Polyzwitterionic Brushes. Science 323, 1698–1701.Google Scholar
  106. 106.
    Kaholek, M., Lee, W., Ahn, S., Ma, H., Caster, K. C., LaMattina, B., Zauscher, S. (2004) Stimulus-responsive poly(N-isopropylacrylamide) brushes and nanopatterns prepared by surface-initiated polymerization. Chem. Mater. 16, 3688–3696.Google Scholar
  107. 107.
    Tugulu, S., Silacci, P., Stergiopulos, N., Klok, H. A. (2007) RGD–functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells. Biomaterials 28, 2536–2546.Google Scholar
  108. 108.
    Arifuzzaman, S., Özçam, A. E., Efimenko, K., Fischer, D. A., Genzer, J. (2009) Formation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption. Biointerphases 4, FA33–FA44.Google Scholar
  109. 109.
    Ryan, A. J., Crook, C. J., Howse, J. R., Topham, P., Geoghegan, M., Martin, S. J., Parnell, A. J., Ruiz-Perez, L. and Jones, R. A. L. (2005) Mechanical actuation by responsive polyelectrolyte brushes and triblock gels. J. Macromol. Sci. Phys. B44, 1103–1121.Google Scholar
  110. 110.
    Ryan, A. J., Crook, C. J., Howse, J. R., Topham, P., Jones, R. A. L., Geoghegan, M., Parnell, A. J., Ruiz-Perez, L., Martin, S. J., Cadby, A., Menelle, A., Webster, J. R. P., Gleeson, A. J. and Bras, W. (2005) Responsive brushes and gels as components of soft nanotechnology. Faraday Discuss. 128, 55–74.Google Scholar
  111. 111.
    Ionov, L., Houbenov, N., Sidorenko, A., Stamm, M. and Minko, S. (2006) Smart microfluidic channels. Adv. Funct. Mater. 16, 1153–1160.Google Scholar
  112. 112.
    Huber, D.; Manginell, R.; Samara, M.; Kim, B.-I.; Bunker, B. C. (2003) Programmed adsorption and release of proteins in a microfluidic device. Science 301, 352–354.Google Scholar
  113. 113.
    Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K., Okano, T. (2004) Temperature-Responsive Cell Culture Surfaces Enable “On  −  Off” Affinity Control between Cell Integrins and RGDS Ligands Biomacro­molecules 5, 505.Google Scholar
  114. 114.
    Cunliffe, D., Alarcon, C. D., Peters, V., Smith, J. R., Alexander, C. (2003) Thermoresponsive Surface-Grafted Poly(N-isopropylacrylamide) Copolymers: Effect of Phase Transitions on Protein and Bacterial Attachment. Langmuir 19, 2888–2899.Google Scholar
  115. 115.
    Huber, D. L., Manginell, R. P., Samara, M. A., Kim B. I., Bunker, B. C. (2003) Programmed Adsorption and Release of Proteins in a Microfluidic Device. Science 301, 352.Google Scholar
  116. 116.
    Nagel, B., Warsinke, A., Katterle, M. (2007) Enzyme Activity Control by Responsive Redox Polymers. Langmuir 23, 6807–6811.Google Scholar
  117. 117.
    de las Heras Alarcón, C., Farhan, T., Osborne, V. L., Huck, W. T. S., Alexander, C. (2005) Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J. Mat. Chem. 15, 2089.Google Scholar
  118. 118.
    Frey, W., Meyer, D. E., Chilkoti, A. (2003) Thermodynamically Reversible Addressing of a Stimuli Responsive Fusion Protein onto a Patterned Surface Template. Langmuir 19, 1641–1653.Google Scholar
  119. 119.
    Koga, T., Nagaoka, A., Higashi, N. (2006) Fabrication of a Switchable Nano-surface Composed of Acidic and Basic Block Polypeptides. Colloids Surf. A 284, 521–527.Google Scholar
  120. 120.
    Israels, R.; Gersappe, D.; Fasolka, M.; Roberts, V. A.; Balazs, A. C. (1994) pH-Controlled Gating in Polymer Brushes. Macromolecules 27, 6679–6682.Google Scholar
  121. 121.
    Mei, Y.; Wu, T.; Xu, C.; Langenbach, K. J.; Elliott, J. T.; Vogt, B. D.; Beers, K. L.; Amis, E. J.; Washburn, N. R. (2005) Tuning Cell Adhesion on Gradient Poly(2-hydroxyethyl methacrylate)-Grafted Surfaces. Langmuir 21, 12309–12314.Google Scholar
  122. 122.
    Harris, B. P., Kutty, J. K., Fritz, E. W., Webb, C. K., Burg, K. J. L., Metters, A. T. (2006) Photopatterned Polymer Brushes Promoting Cell Adhesion Gradients. Langmuir 22, 4467–4471.Google Scholar
  123. 123.
    Zhu, Y. B., Gao, C. Y., Guan, J. J., Shen, J. C. (2003) Engineering porous polyurethane scaffolds by photografting polymerization of methacrylic acid for improved endothelial cell compatibility. J. Biomed. Mater. Res. A 67A, 1367–1373.Google Scholar
  124. 124.
    Anikin, K., Röcker, C., Wittemann, A., Wiedenmann, J., Ballauff, M., Nienhaus, G. U. (2005) Polyelectrolyte-Mediated Protein Adsorption: Fluorescent Protein Binding to Individual Polyelectrolyte Nanospheres. J. Phys. Chem. B 109, 5418.Google Scholar
  125. 125.
    Wittemann, A., Haupt, B., Ballauff, M. (2003) Adsorption of proteins on spherical polyelectrolyte brushes in aqueous solution. Phys. Chem. Chem. Phys. 5, 1671–1677.Google Scholar
  126. 126.
    Pearson, D., Downard, A. J., Muscroft-Taylor, A., Abell, A. D. (2007) Reversible Photoregulation of Binding of α-Chymotrypsin to a Gold Surface. J. Am. Chem. Soc. 129, 14862–14863.Google Scholar
  127. 127.
    Otsu, T., Matsumoto, A. (1998) Controlled Synthesis of Polymers Using the Iniferter Technique: Developments in Living Radical Polymerization. Adv. Polym. Sci. 136, 75.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of ChemistryJagiellonian UniversityKrakowPoland

Personalised recommendations