Molecular Dynamics Methods for Modeling Complex Interactions in Biomaterials

  • Antonio TiloccaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 811)


The molecular dynamics method is a powerful computer simulation technique which provides access to the detailed time evolution (trajectory) of a system in specified conditions, such as a particular temperature or pressure. The full trajectory of the system can be analyzed using statistical mechanics tools to obtain thermodynamical quantities and dynamical properties; the mechanism of chemical reactions and other time-dependent processes, such as diffusion, can also be revealed in high detail. When applied to model extended and complex system such as biomaterials, MD simulations represent an invaluable tool to discover structure–activity relationships and rationalize biomedical applications.

Key words

Computer simulations Molecular dynamics Force fields Ab-initio Car–Parrinello Biomaterials 



Financial support from the UK’s Royal Society (University Research Fellowship) is gratefully acknowledged.


  1. 1.
    Tilocca, A. (2009) Review: Structural Models of Bioactive Glasses from Molecular Dynamics simulations Proc. Royal Soc. A 465, 1003–27.Google Scholar
  2. 2.
    Hench, L. L. (1998) Bioceramics J. Am. Ceram. Soc. 81, 1705–28.Google Scholar
  3. 3.
    Hertz, A., and Bruce, I. J. (2007) Inorganic materials for bone repair or replacement applications Nanomedicine 2, 899–918.Google Scholar
  4. 4.
    Cerruti, M., Greenspan, D., and Powers, K. (2005) Effect of pH and ionic strength on the reactivity of Bioglass 45S5. Biomaterials 26, 1665–74.CrossRefGoogle Scholar
  5. 5.
    Sanbonmatsu, K. Y.; Tung C.-S. (2007) High performance computing in biology: Multimillion atom simulations of nanoscale systems J. Struc. Biol. 157, 470–80.Google Scholar
  6. 6.
    Schulz, R., Lindner, B., Petridis, L., and Smith, J. C. (2009) Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer J. Chem. Theory Comput. 5, 2798–2808.Google Scholar
  7. 7.
    Allen, M. P., and Tildesley, D. J. (1989) Computer Simulations of Liquids Oxford University Press.Google Scholar
  8. 8.
    Frenkel, D., and Smit, B. J. (2001) Understanding Molecular Simulation: From Algorithms to Applications Academic Press, San Diego, California.Google Scholar
  9. 9.
    Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A., and Schulten, K. (2006) Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449.CrossRefGoogle Scholar
  10. 10.
    Marx, D., and Hütter, J. (2000) Ab initio molecular dynamics: theory and implementation. In Modern methods and algorithms of quantum chemistry, vol. 1 (ed. J. Grotendorst). NIC Series, pp. 301–449. Julich, Germany: John von Neumann Institute for Computing.Google Scholar
  11. 11.
    Kanai, Y., Tilocca, A., Selloni, A., and Car, R. (2004) First-principles string molecular dynamics: An efficient approach for finding chemical reaction pathways J. Chem. Phys. 121, 3359–67.Google Scholar
  12. 12.
    Tilocca, A., and Cormack, A. N., Exploring the Surface of Bioactive Glasses: Water Adsorption and Reactivity J. Phys. Chem. C 112, 11936–45.Google Scholar
  13. 13.
    Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press.Google Scholar
  14. 14.
    Moss, R. M., Pickup, D. M., Ahmed, I., Knowles, J. C., Smith, M. E., Newport, R. J. (2008) Structural Characteristics of Antibacterial Bioresorbable Phosphate Glass Adv. Fun. Mater. 18, 634–39.CrossRefGoogle Scholar
  15. 15.
    Tilocca, A., Cormack, A. N., de Leeuw, N. H. (2007) The structure of bioactive silicate glasses: new insight from molecular dynamics simulations Chem. Mater. 19, 95–103.Google Scholar
  16. 16.
    Tilocca, A. (2007) Structure and dynamics of bioactive phosphosilicate glasses and melts from ab initio molecular dynamics simulations Phys. Rev. B 76, 224202.Google Scholar
  17. 17.
    Fois, E., Gamba, A., and Tilocca, A. (2002) Structure and dynamics of the flexible triple helix of water inside VPI-5 molecular sieves J. Phys. Chem. B 106, 4806–4812.Google Scholar
  18. 18.
    Tilocca, A., and de Leeuw, N. H, (2006) Ab-initio molecular dynamics study of 45S5 bioactive ­silicate glass J. Phys. Chem. B 110, 25810–16.Google Scholar
  19. 19.
    Rahman, A. (1964) Correlations in the Motion of Atoms in Liquid Argon Phys. Rev. 136, 405–11.Google Scholar
  20. 20.
    Smith, W., Forester, T. R., Greaves, G. N., Hayter, S., and Gillan, M. J. (1997) Molecular dynamics simulations of alkali-metal diffusion in alkali-metal disilicate glasses J. Mater. Chem. 7, 331–36.Google Scholar
  21. 21.
    Ivanov, I, and Klein, M. L. (2005) Dynamical Flexibility and Proton Transfer in the Arginase Active Site Probed by ab Initio Molecular Dynamics J. Am. Chem. Soc. 127, 4010–20.Google Scholar
  22. 22.
    Molteni, C., and Parrinello, M. (1998) Glucose in Aqueous Solution by First Principles Molecular Dynamics J. Am. Chem. Soc. 120, 2168–71.Google Scholar
  23. 23.
    Minary, P., and Tuckerman, M. E. (2004) Reaction Pathway of the (4 + 2) Diels−Alder Adduct Formation on Si(100)-2×1 J. Am. Chem. Soc. 126, 13920–21.Google Scholar
  24. 24.
    Meyer, A., Horbach, J., Kob, W., Kargl, F., and Schober, H. (2004) Channel Formation and Intermediate Range Order in Sodium Silicate Melts and Glasses Phys. Rev. Lett. 93, 027801.Google Scholar
  25. 25.
    Laio, A., and Parrinello, M. (2002) Escaping free energy minima Proc Natl. Acad. Sci. USA, 99, 12562–66.Google Scholar
  26. 26.
    Tilocca, A., de Leeuw, N. H., and Cormack, A. N. (2006) Shell-model molecular dynamics calculations of modified silicate glasses Phys. Rev. B 73, 104209.Google Scholar
  27. 27.
    Gale, J. D., and Rohl, A. L. The General Utility Lattice Program (2003) Mol. Simul., 29, 291.Google Scholar
  28. 28.
    Pukrittayakamee, A., Malshe, M., Hagan,M., Raff, L. M., Narulkar,R., Bukkapatnum, S., and Komanduri, R. (2009) Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks J. Chem. Phys. 130, 134101.Google Scholar
  29. 29.
    Izvekov S., Parrinello M., Burnham C. J., and Voth G. A. (2004) Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching J. Chem. Phys. 120 1089610913.Google Scholar
  30. 30.
    Lopes, P. E., Roux, B., and MacKerell Jr., A. D. (2009) Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications Theor. Chem. Acc. 124, 11–28.Google Scholar
  31. 31.
    Tilocca, A. (2008) Short- and medium-range structure of multicomponent bioactive glasses and melts: An assessment of the performances of shell-model and rigid-ion potentials J. Chem. Phys. 129, 084504.Google Scholar
  32. 32.
    Car, R. and Parrinello, M. (1985) Unified Approach For Molecular Dynamics and Density Functional Theory Phys. Rev. Lett. 55, 2471.Google Scholar
  33. 33.
    Pastore, G., Smargiassi, E., and Buda, F. (1991) Theory of ab-initio molecular dynamics calculations Phys. Rev. A 44, 6334–47.Google Scholar
  34. 34.
    Tilocca, A., and Cormack, A. N. (2007) Structural effects of phosphorus inclusion in bioactive silicate glasses J. Phys. Chem. B 111, 14256–64.Google Scholar
  35. 35.
    Donadio, M., Bernasconi, M., and Tassone, F. (2004) Photoelasticity of sodium silicate glass from first principles Phys. Rev. B 70, 214205.Google Scholar
  36. 36.
    Tilocca, A., and Cormack, A. N. (2009) Modeling the water-bioglass interface by ab-initio Molecular Dynamics simulations ACS Applied Materials & Interfaces 1, 1324–33.Google Scholar
  37. 37.
    Tilocca, A., and Cormack, A. N. (2010) Surface signatures of bioactivity: MD simulations of 45S and 65S silicate glasses Langmuir 26, 545–51.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemistry and Thomas Young CentreUniversity College LondonLondonUK

Personalised recommendations