Advertisement

The Role of Nanophotonics in Regenerative Medicine

  • Maria F. Garcia-ParajoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 811)

Abstract

Cells respond to biochemical and mechanical stimuli through a series of steps that begin at the molecular, nanometre level, and translate finally in global cell response. Defects in biochemical- and/or mechanical-sensing, transduction or cellular response are the cause of multiple diseases, including cancer and immune disorders among others. Within the booming field of regenerative medicine, there is an increasing need for developing and applying nanotechnology tools to bring understanding on the cellular machinery and molecular interactions at the nanoscale. Nanotechnology, nanophotonics and in particular, high-resolution-based fluorescence approaches are already delivering crucial information on the way that cells respond to their environment and how they organize their receptors to perform specialized functions. This chapter focuses on emerging super-resolution optical techniques, summarizing their principles, technical implementation, and reviewing some of the achievements reached so far.

Key words

Super-resolution optical microscopy Nanophotonics Near-field optical microscopy Cell membrane organization 

Notes

Acknowledgments

The author would like to thank B. I. de Bakker, M. Koopman and T.S. van Zanten for NSOM images and fruitful discussions. Financial support has been provided by the EC-RTN-IMMUNANOMAP and EC-NEST-BIO-LIGHT-TOUCH, Spanish Ministry of Science and Technology MAT2007-66629-C02-01 and Generalitat de Catalunya 2009 SGR 597.

References

  1. 1.
    Stephens, D. J., and Allan, V. J. (2003) Light microscopy techniques for live cell imaging. Science 300, 82–86.CrossRefGoogle Scholar
  2. 2.
    Michalet, X., Kapanidis, A. N., Laurence, T., Pinaud, F., Doose, S., Pfughoefft, M., and Weiss, S. (2003) The power and prospects of fluorescence microscopies and spectroscopies. Annu. Rev. Biophys. Biomol. Struct. 32, 161–182.CrossRefGoogle Scholar
  3. 3.
    Betzig, E., and Chichester, R. J. (1993) Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425.CrossRefGoogle Scholar
  4. 4.
    Weiss, S. (1999) Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683.CrossRefGoogle Scholar
  5. 5.
    Tsien, R. Y. (1998) The green fluorescent protein Annu. Rev. Biochem. 67, 509–544.Google Scholar
  6. 6.
    Lippincott-Schwartz, J., and Patterson, G. H. (2003) Development and use of fluorescence protein markers in living cells. Science 300, 87–91.Google Scholar
  7. 7.
    Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B. (1994) Tapping mode atomic force microscopy in liquids Appl. Phys. Lett. 64, 1738–1740.Google Scholar
  8. 8.
    Putman, C. A., van der Werf, K. O., de Groot, B. G., van Hulst, N. F., and Greve, J. (1994) Tapping mode atomic force microscopy in liquid Appl. Phys. Lett. 64, 2454–2456.Google Scholar
  9. 9.
    Willemsen, O. H., Snel, M. M., Cambi, A., Gerve, J., de Groot, B. G., and Figdor, C. G. (2000) Biomolecular interactions measured by atomic force microscopy Biophys. J. 79, 3267–3281.Google Scholar
  10. 10.
    Stroh, C., Wang, H., Bash, R., Ashcroft, B., Nelson, J., Gruber, H., Lohr, D., Lindsay, S. M., and Hinterdorfer, P (2004) Single-molecule recognition imaging microscopy Proc. Natl. Acad. Sci. USA 101, 12503–12507.Google Scholar
  11. 11.
    Donnert, G., Keller, J., Medda, R., Andrei, M. A., Rizzoli, S. O., Luhrmann, R., Jahn, R., Eggeling, C., and Hell, S. W. (2006) Macromolecular-scale resolution in biological fluorescence microscopy Proc. Natl. Acad. Sci. USA 103, 11440–11445.Google Scholar
  12. 12.
    Willig, K. I., Rizzoli, S. O., Wesphal, V., Jahn, R., and Hell, S. W. (2006) STED microscopy reveals hat synaptotagmin remains clustered after synpatic vesicle exocytosis Nature 440, 935–939.Google Scholar
  13. 13.
    Sieber, J. J., Willig, K. I., Kutzner, C., Gerding-Reimers, C., Harke, B., Donnert, G., Rammner, B., Eggeling, C., Hell, S. W., Grubmuller, H., and Lang, T. (2007) Anatomy and dynamics of a supramolecular membrane protein cluster Science 317, 1072–1076.Google Scholar
  14. 14.
    Kellner, R. R., Baier, C. J., Willig, K. I., Hell, S. W., and Barrantes, F. J. (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy Neuroscience 144, 135–143.Google Scholar
  15. 15.
    Wesphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R., and Hell, S. W. (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement Science 320, 246–249.Google Scholar
  16. 16.
    Gustafsson, M. G. L. (2005) Non-linear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution Proc. Natl. Acad. Sci. USA 102, 13081–13086.Google Scholar
  17. 17.
    Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M. C., Agard, D. A., Gustafsson, M. G. L., Leonhardt, H., and Sedat, J. W. (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy Science 320, 1332–1336.Google Scholar
  18. 18.
    Gustaffson, M. G. L., Shao, L., Carlton, P. M., Wang, C. J. R., Golubovskaya, I. N., Cande, W. Z., Agard, D. A., and Sedat, J. W. (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination Biophys. J. 94, 4957–4970.Google Scholar
  19. 19.
    Pielage, J., Cheng, L., Fetter, R. D., Carlton, P. M., Sedat, J. W., and Davis, G. W. (2008) A presynaptic giant ankrin stabilizes the NMJ through regulation of presynaptics microtubules and transsynaptic cell adhesion Neuron 58, 195–209.Google Scholar
  20. 20.
    Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W. S., Olenuch, Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J., and Hess, H. F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution Science 313, 1642–1645.Google Scholar
  21. 21.
    Hess, S. T., Girirajan, T. P. K., and Mason, M. D. (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy Biophys. J. 91, 4258–4272.Google Scholar
  22. 22.
    Rust, M. J., Bates, M., and Zhuang, X. (2006) Subdiffraction limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods 3, 793–796.Google Scholar
  23. 23.
    Schroff, H., Galbraith, C. G., Galbraith, J. A., White, H., Gillete, J., Olenych, S., Davidson, M. W., and Betzig, E. (2007) Dual-color superresolution imaging of genetically expressed probes within adhesion complexes Proc. Natl. Acad. Sci. USA 104, 20308–20313.Google Scholar
  24. 24.
    Manley, S., Gillete, J. M., Patterson, G. H., Schroff, H., Hess, H. F., Betzig, E., and Lippincott-Schwartz, J. (2008) High-density mapping of single molecule trajectories with photoactivated localization microscopy Nat. Methods 5, 155–157.Google Scholar
  25. 25.
    Hess, S. T., Gould, T. J., Gudheti, M. V., Maas, S. A., Mills, K. D., and Zimmerberg, J. (2007) Dynamic clustered distribution of hemagglutinin resolved at 40nm in living cell membranes discriminates between raft theories Proc. Natl. Acad. Sci. USA 104, 17370–17375.Google Scholar
  26. 26.
    Schroff, H., Galbraith, C. G., Galbraith, J. A., and Betzig, E. (2008) Live cell photoactivated localization microscopy of nanoscale adhesion dynamics Nat. Methods 5, 417–423.Google Scholar
  27. 27.
    Pohl, D. W., Denk, W., and Lanz, M. (1984) Optical stethoscopy: image recording with resolution l/20 Appl. Phys. Lett. 44, 651–653.Google Scholar
  28. 28.
    Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S., Kostelak, R. L. (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale Science 251, 1468–1470.Google Scholar
  29. 29.
    van Hulst, N. F., Garcia-Parajo, M. F., Moers, M. H. P., Veerman, J. A., and Ruiter, A. G. T. (1997) Near-field fluorescence imaging of genetic material: towards the molecular limit J. Struct. Bio. 119, 222–231.Google Scholar
  30. 30.
    Hecht, B., Sick, B., Wild, U. P., Deckert, V., Zenobi, R., Martin O. J. F. and Dieter, D. W. (2000) Scanning near-field optical microscopy with aperture probes: fundamentals and applications J. Chem. Phys. 112, 7761–7774.Google Scholar
  31. 31.
    Karrai, K., and Grober, R. D. (1995) Piezo-electric tip-sample distance control for near field optical microscopes Appl. Phys. Lett. 66, 1842–1844.Google Scholar
  32. 32.
    Ruiter, A. G., Veerman, J. A., van der Werf, K. O., van Hulst, N. F. (1997) Dynamic behavior of tuning fork shear-force feedback Appl. Phys. Lett. 71, 28–30.Google Scholar
  33. 33.
    Zenhausern, F., Martin, Y., and Wickramasinghe, H. K. (1995) Scanning interferometric apertureless microscopy: Optical imaging at 10 Angstrom resolution Science 269, 1083–1085.Google Scholar
  34. 34.
    Novotny, L., and Stranick, S. J. (2006) Near-field optical microscopy and spectroscopy with pointed probes Annu. Rev. Phys. Chem. 57, 303–331.Google Scholar
  35. 35.
    Sanchez, E. J., Novotny, L., Sunney-Xie, X. (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips Phys. Rev. Lett. 82, 4014–4017.Google Scholar
  36. 36.
    Anger, P., Bharadwaj, P., and Novotny, L. (2006) Enhancement and quenching of single-molecule fluorescence Phys. Rev. Lett. 96, 1130021–1130024.Google Scholar
  37. 37.
    Höppener, C., and Novotny, L. (2008) Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids Nano Lett. 8, 642–646.Google Scholar
  38. 38.
    Höppener, C., Beams, R., Novotny, L. (2009) Background suppression in near-field optical imaging Nano Lett. 9, 903–908.Google Scholar
  39. 39.
    Koopman, M., de Bakker B. I., Garcia-Parajo, M. F., and van Hulst, N. F. (2003) Shear force imaging of soft samples in liquid using a diving bell concept Appl. Phys. Lett. 83, 5083–5085.Google Scholar
  40. 40.
    Koopman, M., Cambi, A., de Bakker, B. I., Joosten, B., Figdor, C. G., van Hulst, N. F., and Garcia-Parajo, M.F. (2004) Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells FEBS Lett. 573, 6–10.Google Scholar
  41. 41.
    Höppener, C., Siebrasse, J. P., Peters, R., Kubitscheck, U., and Naber, A. (2005) High-resolution near-field optical imaging of single nuclear pore complexes under physiological conditions Biophys. J. 88, 3681–3688.Google Scholar
  42. 42.
    Korchev, Y. E., Raval, M., Lab, M. J., Gorelik, J., Edwards, C. R. W., Rayment, T., and Klenerman, D. (2000) Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells Biophys. J. 78, 2675–2679.Google Scholar
  43. 43.
    de Bakker, B. I., de Lange, F., Cambi, A., Korterik, J. P., van Dijk, E. M. H. P., van Hulst, N. F., Figdor, C. G., and Garcia-Parajo, M. F. (2007) Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy Chemphyschem 8, 1473–1480.Google Scholar
  44. 44.
    Chen, Y., Shao, L., Ali, Z., Cai, J., and Chen, Z. W. (2008) NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vγ2Vδ2 T-cell expansion Blood 111, 4220–4232.Google Scholar
  45. 45.
    Enderle, T., Ha, T., Ogletree, D. F., Chemla, D. S., Magowan, C., and Weiss, S. (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy Proc. Natl. Acad. Sci. USA 94, 520–525.Google Scholar
  46. 46.
    de Bakker, B. I., Bodnar, A., van Dijk, E. P., Vámosi, G., Damjanovich, S., Waldmann, T. A., van Hulst, N. F., Jenei A., and Garcia-Parajo, M. F. (2008) Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human T lymphoma cells J. Cell Sci. 121, 627–633.Google Scholar
  47. 47.
    Ianoul, A., Grant, D. D., Rouleau, Y., Bani-Yaghoub, M., Johnston, L. J., and Pezacki, J. P. (2005) Imaging nanometer domains of β-adrenergic receptor complexes on the surface of cardiac myocytes Nat. Chem. Biol. 1, 196–202.Google Scholar
  48. 48.
    van Zanten, T. S., Cambi, A., Koopman, M., Joosten, B., Figdor, C. G., and Garcia-Parajo, M. F. (2009) Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion Proc. Natl. Acad. Sci. USA 106, 18557–18562.Google Scholar
  49. 49.
    Vobornik, D., Banks, D. S., Lu, Z., Fradin, C., Taylor, R., and Johnston, L. J. (2008) Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes Appl. Phys. Lett. 93, 163904–163906.Google Scholar
  50. 50.
    Garcia-Parajo, M. F. (2008) Optical antennas focus in on biology Nat. Photonics 2, 201–203.Google Scholar
  51. 51.
    Frey, H. G., Witt, S., Felderer, K., Guckenberger, R. (2004) High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip Phys. Rev. Lett. 93, 200801–200804.Google Scholar
  52. 52.
    Taminiau, T. H., Moerland, R. J., Segerink, F. B., Kuipers, L. van Hulst, N. F. (2007) λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence Nano Lett. 7, 28–33.Google Scholar
  53. 53.
    van Zanten, T. S., Lopez, M. J., Garcia-Parajo, M. F. (2009) Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna Small 6, 270–275.Google Scholar
  54. 54.
    Denk, W., Strickler, J. H., and Webb, W. W. (1990) Two-photon laser scanning fluorescente microscopy Science 248, 73–76.Google Scholar
  55. 55.
    Miller, M. J., Wei, S. H., Cahalan, M. D., and Parker, I. (2003) Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy Proc. Nat. Acad. Sci. USA 100, 2604–2609.Google Scholar
  56. 56.
    Bousso, P., and Robey, E. A. (2004) Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy Immunity 21, 349–355.Google Scholar
  57. 57.
    Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma Science 308, 1314–1318.Google Scholar
  58. 58.
    Davalos, D. et al. (2005) ATP mediates rapid microglial response to local brain injury in vivo Nat. Neurosci 8, 752–758.Google Scholar
  59. 59.
    Helmchen, F., and Denk, W. (2005) Deep ­tissue two-photon microscopy Nat. Methods 2, 932–940.Google Scholar
  60. 60.
    Jain, R. K., Munn, L. L., and Fukumura, D. (2002) Dissecting tumor pathophysiology using infravital microscopy Nat. Rev. Cancer 2, 266–276.Google Scholar
  61. 61.
    Skoch, J., Hickey, G. A., Kajadasz, S. T., Hyman, B. T., and Bacskai, B. J. (2005) In-vivo imaging of amyloid-beta deposits in mouse brain with multiphoton microscopy Methods Mol. Bio. 299, 349–363.Google Scholar
  62. 62.
    Tsai, J., Grutzendler, J., Duff, K., and Gan, W. (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches Nat. Neurosci. 7, 1181–1183.Google Scholar
  63. 63.
    Bacskai, B. J. et al. (2003) Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice Proc. Natl. Acad. Sci. USA 100, 12462–12467.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.BioNanoPhotonics GroupIBEC – Institute for Bioengineering of Catalonia and CIBER-BBNBarcelonaSpain
  2. 2.ICREA – Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations