Nanobiosensors for In Vitro and In Vivo Analysis of Biomolecules

  • J.-Pablo Salvador
  • Mark P. Kreuzer
  • Romain Quidant
  • Gonçal Badenes
  • M.-Pilar MarcoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 811)


This chapter presents as a proof of concept the development of a nanosensor based on the localized surface plasmon resonance for the analysis of biomolecules. The method presented take advantage of the plasmon generated in the surrounding of gold nanoparticles (i.e., 100 nm) for the specific interaction between antigen and antibody. The procedure for the optimization of an assay for the determination of biomolecules consisted mainly of four steps. First, the immobilization of gold nanoparticles over the glass surface using the appropriate ratio, concentration and time-contact of amino-sylilating agent, and nonreactive sylilating agent. Next, the suitable concentration of coating antigen in order to obtain the maximum signal LSPR. Following this step, the interaction between antigen and antibody (specific antibody) is evaluated by measuring the signal LSPR. Finally, a calibration curve was obtained for the detection of a small organic molecule such as stanozolol using this nanobiosensor. As a proof of concept, the use of a model is performed that in this case is for the detection of an anabolic androgenic steroid, such as stanozolol which is banned for the European Commission (EC) as a growth promoter and for the World Anti-Doping Agency (WADA) as a doping agent. The nanosensor developed demonstrates its feasibility for screening purposes due to the limit of detection achieved (0.7 μg/L) is under the MRPL required for both organizations (10 μg/L). A protocol such as that presented here may be generally applied for the analysis of other pollutant such as pesticides or antibiotics, or for biomedical applications for the analysis of biomarkers using the LSPR principle using gold nanoparticles (i.e., 30–120 nm).

Key words

Antibodies Plasmon LSPR Biosensor Stanozolol Gold nanoparticles 



This work also has been supported by the Ministry of Science and Education (contract number DEP2007-73224-C03-01). The AMR group is a consolidated Grup de Recerca de la Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació la Generalitat de Catalunya (expedient 2009 SGR 1343). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.


  1. 1.
    Salvador, J. P., J. Adrian, R. Galve, D. G. Pinacho, M. Kreuzer, F. Sánchez-Baeza and M. P. Marco (2007). Chapter 2.8 Application of bioassays/biosensors for the analysis of pharmaceuticals in environmental samples. Comprehensive Analytical Chemistry. M. Petrovic and D. Barceló, Elsevier. Volume 50: 279–334.Google Scholar
  2. 2.
    Homola, J. (2008). Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews 108(2): 462–493.CrossRefGoogle Scholar
  3. 3.
    Petz, M. (2009). Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. Monatshefte für Chemie / Chemical Monthly 140(8): 953–964.CrossRefGoogle Scholar
  4. 4.
    Boozer, C., G. Kim, S. Cong, H. Guan and T. Londergan (2006). Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Current Opinion in Biotechnology 17(4): 400–405.CrossRefGoogle Scholar
  5. 5.
    Liu, X., D. Song, Q. Zhang, Y. Tian, L. Ding and H. Zhang (2005). Wavelength-modulation surface plasmon resonance sensor. TrAC Trends in Analytical Chemistry 24(10): 887–893.CrossRefGoogle Scholar
  6. 6.
    Pattnaik, P. (2005). Surface plasmon resonance. Applied Biochemistry and Biotechnology 126(2): 79–92.CrossRefGoogle Scholar
  7. 7.
    Sepúlveda, B., P. C. Angelomé, L. M. Lechuga and L. M. Liz-Marzán (2009). LSPR-based nanobiosensors. Nano Today 4(3): 244–251.CrossRefGoogle Scholar
  8. 8.
    Kreibig, U. and M. Vollmer (1995). Optical Properties of Metal Clusters. Berlin, Springer.Google Scholar
  9. 9.
    Nath, N. and A. Chilkoti (2004). Label-Free Biosensing by Surface Plasmon Resonance of Nanoparticles on Glass: Optimization of Nanoparticle Size. Analytical Chemistry 76(18): 5370–5378.CrossRefGoogle Scholar
  10. 10.
    Yu, C. and J. Irudayaraj (2006). Multiplex Biosensor Using Gold Nanorods. Analytical Chemistry 79(2): 572–579.CrossRefGoogle Scholar
  11. 11.
    Mock, J. J., M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 116(15): 6755–6759.CrossRefGoogle Scholar
  12. 12.
    Raschke, G., S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl and K. Kurzinger (2003). Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Letters 3(7): 935–938.CrossRefGoogle Scholar
  13. 13.
    Sherry, L. J., S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley and Y. Xia (2005). Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Letters 5(10): 2034–2038.CrossRefGoogle Scholar
  14. 14.
    Acimovic, S. S., M. P. Kreuzer, M. U. Gonzalez and R. Quidant (2009). Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano 3(5): 1231–1237.CrossRefGoogle Scholar
  15. 15.
    Barbillon, G., J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam and P. Royer (2007). Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surface Science 601(21): 5057–5061.CrossRefGoogle Scholar
  16. 16.
    EC (1996). Directive 96/23/EC. Off. J. Eur. Commun. L 125: 3.Google Scholar
  17. 17.
    WADA The 2009 Prohibited list.
  18. 18.
    Salvador, J. P., F. Sánchez-Baeza and M. P. Marco (2008). Simultaneous immunochemical detection of stanozolol and the main human metabolite, 3’-hydroxy-stanozolol, in urine and serum samples. Analytical Biochemistry 376(2): 221–228.CrossRefGoogle Scholar
  19. 19.
    Kreuzer, M., R. Quidant, J. P. Salvador, M. P. Marco and G. Badenes (2008). Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Analytical and Bioanalytical Chemistry 391(5): 1813–1820.CrossRefGoogle Scholar
  20. 20.
    Tätte, T., K. Saal, I. Kink, A. Kurg, R. Lõhmus, U. Mäeorg, M. Rahi, A. Rinken and A. Lõhmus (2003). Preparation of smooth siloxane surfaces for AFM visualization of immobilized biomolecules. Surface Science 532–535: 1085–1091.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J.-Pablo Salvador
    • 1
    • 2
  • Mark P. Kreuzer
    • 3
  • Romain Quidant
    • 3
  • Gonçal Badenes
    • 3
  • M.-Pilar Marco
    • 1
    • 2
    Email author
  1. 1.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain
  2. 2.Applied Molecular Receptors GroupIQAC-CSICBarcelonaSpain
  3. 3.ICFO Institute of Photonic ScienceCastelldefelsSpain

Personalised recommendations