Skip to main content

Nanobiosensors for In Vitro and In Vivo Analysis of Biomolecules

  • Protocol
  • First Online:
Nanotechnology in Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 811))

Abstract

This chapter presents as a proof of concept the development of a nanosensor based on the localized surface plasmon resonance for the analysis of biomolecules. The method presented take advantage of the plasmon generated in the surrounding of gold nanoparticles (i.e., 100 nm) for the specific interaction between antigen and antibody. The procedure for the optimization of an assay for the determination of biomolecules consisted mainly of four steps. First, the immobilization of gold nanoparticles over the glass surface using the appropriate ratio, concentration and time-contact of amino-sylilating agent, and nonreactive sylilating agent. Next, the suitable concentration of coating antigen in order to obtain the maximum signal LSPR. Following this step, the interaction between antigen and antibody (specific antibody) is evaluated by measuring the signal LSPR. Finally, a calibration curve was obtained for the detection of a small organic molecule such as stanozolol using this nanobiosensor. As a proof of concept, the use of a model is performed that in this case is for the detection of an anabolic androgenic steroid, such as stanozolol which is banned for the European Commission (EC) as a growth promoter and for the World Anti-Doping Agency (WADA) as a doping agent. The nanosensor developed demonstrates its feasibility for screening purposes due to the limit of detection achieved (0.7 μg/L) is under the MRPL required for both organizations (10 μg/L). A protocol such as that presented here may be generally applied for the analysis of other pollutant such as pesticides or antibiotics, or for biomedical applications for the analysis of biomarkers using the LSPR principle using gold nanoparticles (i.e., 30–120 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salvador, J. P., J. Adrian, R. Galve, D. G. Pinacho, M. Kreuzer, F. Sánchez-Baeza and M. P. Marco (2007). Chapter 2.8 Application of bioassays/biosensors for the analysis of pharmaceuticals in environmental samples. Comprehensive Analytical Chemistry. M. Petrovic and D. Barceló, Elsevier. Volume 50: 279–334.

    CAS  Google Scholar 

  2. Homola, J. (2008). Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews 108(2): 462–493.

    Article  CAS  Google Scholar 

  3. Petz, M. (2009). Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. Monatshefte für Chemie / Chemical Monthly 140(8): 953–964.

    Article  CAS  Google Scholar 

  4. Boozer, C., G. Kim, S. Cong, H. Guan and T. Londergan (2006). Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Current Opinion in Biotechnology 17(4): 400–405.

    Article  CAS  Google Scholar 

  5. Liu, X., D. Song, Q. Zhang, Y. Tian, L. Ding and H. Zhang (2005). Wavelength-modulation surface plasmon resonance sensor. TrAC Trends in Analytical Chemistry 24(10): 887–893.

    Article  CAS  Google Scholar 

  6. Pattnaik, P. (2005). Surface plasmon resonance. Applied Biochemistry and Biotechnology 126(2): 79–92.

    Article  CAS  Google Scholar 

  7. Sepúlveda, B., P. C. Angelomé, L. M. Lechuga and L. M. Liz-Marzán (2009). LSPR-based nanobiosensors. Nano Today 4(3): 244–251.

    Article  Google Scholar 

  8. Kreibig, U. and M. Vollmer (1995). Optical Properties of Metal Clusters. Berlin, Springer.

    Google Scholar 

  9. Nath, N. and A. Chilkoti (2004). Label-Free Biosensing by Surface Plasmon Resonance of Nanoparticles on Glass: Optimization of Nanoparticle Size. Analytical Chemistry 76(18): 5370–5378.

    Article  CAS  Google Scholar 

  10. Yu, C. and J. Irudayaraj (2006). Multiplex Biosensor Using Gold Nanorods. Analytical Chemistry 79(2): 572–579.

    Article  Google Scholar 

  11. Mock, J. J., M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 116(15): 6755–6759.

    Article  CAS  Google Scholar 

  12. Raschke, G., S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl and K. Kurzinger (2003). Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Letters 3(7): 935–938.

    Article  CAS  Google Scholar 

  13. Sherry, L. J., S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley and Y. Xia (2005). Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Letters 5(10): 2034–2038.

    Article  CAS  Google Scholar 

  14. Acimovic, S. S., M. P. Kreuzer, M. U. Gonzalez and R. Quidant (2009). Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano 3(5): 1231–1237.

    Article  CAS  Google Scholar 

  15. Barbillon, G., J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam and P. Royer (2007). Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surface Science 601(21): 5057–5061.

    Article  CAS  Google Scholar 

  16. EC (1996). Directive 96/23/EC. Off. J. Eur. Commun. L 125: 3.

    Google Scholar 

  17. WADA The 2009 Prohibited list.http://www.wada-ama.org/.

  18. Salvador, J. P., F. Sánchez-Baeza and M. P. Marco (2008). Simultaneous immunochemical detection of stanozolol and the main human metabolite, 3’-hydroxy-stanozolol, in urine and serum samples. Analytical Biochemistry 376(2): 221–228.

    Article  CAS  Google Scholar 

  19. Kreuzer, M., R. Quidant, J. P. Salvador, M. P. Marco and G. Badenes (2008). Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Analytical and Bioanalytical Chemistry 391(5): 1813–1820.

    Article  CAS  Google Scholar 

  20. Tätte, T., K. Saal, I. Kink, A. Kurg, R. Lõhmus, U. Mäeorg, M. Rahi, A. Rinken and A. Lõhmus (2003). Preparation of smooth siloxane surfaces for AFM visualization of immobilized biomolecules. Surface Science 532–535: 1085–1091.

    Article  Google Scholar 

Download references

Acknowledgments

This work also has been supported by the Ministry of Science and Education (contract number DEP2007-73224-C03-01). The AMR group is a consolidated Grup de Recerca de la Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació la Generalitat de Catalunya (expedient 2009 SGR 1343). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-Pilar Marco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Salvador, JP., Kreuzer, M.P., Quidant, R., Badenes, G., Marco, MP. (2012). Nanobiosensors for In Vitro and In Vivo Analysis of Biomolecules. In: Navarro, M., Planell, J. (eds) Nanotechnology in Regenerative Medicine. Methods in Molecular Biology, vol 811. Humana Press. https://doi.org/10.1007/978-1-61779-388-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-388-2_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-387-5

  • Online ISBN: 978-1-61779-388-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics