Evaluation of Cytocompatibility and Cell Response to Boron Nitride Nanotubes

  • Gianni CiofaniEmail author
  • Serena Danti
Part of the Methods in Molecular Biology book series (MIMB, volume 811)


While in the last years applications of carbon nanotubes in the field of biotechnology have been largely proposed, so far biomedical applications of boron nitride nanotubes (BNNTs) are still totally unexplored. BNNTs show very interesting physical properties that might be exploited in the nanomedicine field. To fill up the lack of biocompatibility studies on BNNTs, our group has recently begun a rational investigation on interactions between BNNTs and different cell lines. This chapter reports on preliminary cytocompatibility studies carried out on human neuroblastoma (SH-SY5Y) and on mouse myoblast (C2C12) cell lines as model of neural and skeletal muscle cells, respectively, highlighting the methods that allowed us to evaluate the main parameters of interests for cytocompatibility, such as cell viability, metabolism, apoptosis, and differentiation.

Key words

Boron nitride nanotubes Cytocompatibility Cellular uptake SH-SY5Y cell line C2C12 cell line 



Authors would like to thank Mr. Leonardo Ricotti, Dr. Stefania Moscato, Dr. Delfo D’Alessandro, Mr. Carlo Filippeschi, and Dr. Vittoria Raffa for their valuable help in the experimental procedures, and Prof. Mario Petrini and Prof. Arianna Menciassi, whose laboratories are hosting the research presented in this chapter.


  1. 1.
    Terrones, M., Romo-Herrera, J.M., Cruz-Silva, E., López-Urías, F., Muñoz-Sandoval, E., Velázquez-Salazar, J.J., Terrones, H., Bando, Y., and Golberg, D. (2007) Pure and doped boron nitride nanotubes. Materials Today 10, 30–38.Google Scholar
  2. 2.
    Lacerda, L., Bianco, A., Prato, M., and Kostarelos, K. (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58, 1460–1470.Google Scholar
  3. 3.
    Ciofani, G., Raffa, V., Menciassi, A., and Cuschieri, A. (2009) Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 4, 8–10.Google Scholar
  4. 4.
    Ciofani, G., Raffa, V., Menciassi, A., and Dario, P. (2008) Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J. Nanosci. Nanotechno. 8, 6223–6231.Google Scholar
  5. 5.
    Ciofani, G., Raffa, V., Menciassi, A., and Cuschieri, A. (2008) Cytocompatibility, interactions and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 101, 850–858.Google Scholar
  6. 6.
    Ciofani, G., Raffa, V., Yu, J., Chen, Y., Obata, Y., Takeoka, S., Menciassi, A., and Cuschieri, A. (2009) Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery. Curr. Nanosci. 5, 33–38.Google Scholar
  7. 7.
    Ciofani, G., Raffa, V., Menciassi, A., and Cuschieri, A. (2009) Folate functionalised boron nitride nanotubes and their selective uptake by glioblastoma multiforme cells: implications for their use as boron carriers in clinical boron neutron capture therapy. Nanoscale Res. Lett. 4, 113–121.Google Scholar
  8. 8.
    Nakhmanson, S.M., Calzolari, A., Meunier, V., Bernholc, J., and Buongiorno Nardelli, M. (2003) Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys. Rev. 67, 235–406.Google Scholar
  9. 9.
    Ciofani G., Raffa V., Danti S., Menciassi A., Dario P., Petrini M., Cuschieri A. Piezoelectric nanotube - mediated cell stimulation. International patent application PCT/IB2010/051602, April 14th, 2010.Google Scholar
  10. 10.
    Ciofani G., Ricotti L., Danti S., Moscato S., Nesti C., D’Alessandro D., Dinucci D., Chiellini F., Pietrabissa A., Petrini M., Menciassi A. Investigation of interactions between poly-L-lysine coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility and differentiation. International Journal of Nanomedicine, 5: 285-298 (2010).Google Scholar
  11. 11.
    Chen, Y., Fitz Gerald, J., Williams J.S., Bulcock, S. (1999) Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 299, 260–264.Google Scholar
  12. 12.
    Yu, J., Chen, Y., Wuhrer, R., Liu, Z., and Ringer, S.P. (2005) In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 17, 5172–5176.Google Scholar
  13. 13.
    Yaffe, D., and Saxel, O. (1977) A myogenic cell line with altered serum requirements for differentiation. Differentiation 7, 159–166.Google Scholar
  14. 14.
    Singer, V.L., Jones, L.J., Yue, S.T., and Haugland, R.P. (1997) Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249, 228–238.Google Scholar
  15. 15.
    Stoscheck, C.M. (1990) Quantitation of protein. Method. Enzymol. 182, 50–69.Google Scholar
  16. 16.
    Martin S.J., Reutelingsperger, C.P., McGahon, A.J., Rader, J.A., van Schie, R.C., LaFace D.M., and Green, D.R. (1995) Early redistribution of plasma membrane phophatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556.Google Scholar
  17. 17.
    Shi Kam, N.W., Jessop, T.C., Wender, P.A., and Dai, H. (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Smart Materials Lab, Center of MicroBioRoboticsItalian Institute of Technology, Scuola Superiore Sant’AnnaPisaItaly
  2. 2.Otology – Cochlear Implants UnitAzienda Ospedaliera Universitaria Pisana & University of PisaPisaItaly

Personalised recommendations